Vol. 73
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-02-16
An UWB Top-Loaded Monocone Antenna for Multiservice Wireless Applications
By
Progress In Electromagnetics Research Letters, Vol. 73, 91-97, 2018
Abstract
A compact ultra-wideband (UWB) top-loaded antenna for multiservice wireless applications is presented. It consists of a metal cone radiator, a small ground plane, four shorting poles and a top-cross plate, among which the top-cross plate with two slots shorted to the ground planet is important to broaden the low frequency bandwidth. The measured result shows that an improved impedance bandwidth of 185% from 1.17 to 30 GHz is achieved. The omnidirectional stable radiation pattern in the horizontal plane is also obtained. The volume of proposed design is approximately 0.0173λ3 at 1.17 GHz. With the small volume and UWB characteristic, the design of the proposed antenna is very suitable for many wireless standards such as Softbank (1427-1500 MHz), DCS1800, PCS1900, UMTS, IMT2000, Wi-Fi (2.4 GHz), WiMAX (2.2-5.5 GHz), UWB (3.1-10.6 GHz), and satellite communication (X band, Ku band and Ka band).
Citation
Xia Bai, Ming Su, Zhaodong Gao, and Yuan'an Liu, "An UWB Top-Loaded Monocone Antenna for Multiservice Wireless Applications," Progress In Electromagnetics Research Letters, Vol. 73, 91-97, 2018.
doi:10.2528/PIERL17080906
References

1. Koohestani, M., J.-F. Z¨urcher, A. A. Moreira, and A. K. Skrivervik, "A novel, low-profile, verticallypolarized UWB antenna for WBAN," IEEE Trans. Antennas Propag., Vol. 62, 1888-1894, 2014.
doi:10.1109/TAP.2014.2298886

2. Jeong, W., J. Tak, and J. Choi, "A low-profile IR-UWB antenna with ring patch for WBAN application," IEEE Antennas Wireless. Propag. Lett., Vol. 14, 1447-1450, 2015.
doi:10.1109/LAWP.2015.2411263

3. Aten, D. W. and R. L. Haupt, "A wideband, low profile, shorted top hat monocone antenna," IEEE Trans. Antennas Propag., Vol. 60, 4485-4491, 2012.
doi:10.1109/TAP.2012.2207313

4. Zuo, S.-L., Y. Yin, Z.-Y. Zhang, and H.-K. Song, "Enhanced bandwidth of low-profile sleeve monopole antenna for indoor base station application," Electron. Lett., Vol. 46, 1587-1588, 2010.
doi:10.1049/el.2010.2708

5. Zhao, Y., Z. Shen, and W. Wu, "Wideband and low-profile monocone quasi-yagi antenna for end-fire radiation," IEEE Antennas Wireless. Propag. Lett., Vol. 16, 325-328, 2017.
doi:10.1109/LAWP.2016.2574870

6. He, K., S.-X. Gong, and D. Guo, "Broadband omnidirectional distributed antenna for indoor wireless communication systems," Electron. Lett., Vol. 52, 1361-1362, 2016.
doi:10.1049/el.2016.0832

7. Elsherbini, A. and K. Sarabandi, "Very low-profile top-loaded UWB coupled sectorial loops antenna," IEEE Antennas Wireless. Propag. Lett., Vol. 10, 800-803, 2011.
doi:10.1109/LAWP.2011.2164569

8. Yeoh, W.-S. and W. S. T. Rowe, "An UWB conical monopole antenna for multiservice wireless applications," IEEE Antennas Wireless. Propag. Lett., Vol. 14, 1085-1088, 2015.
doi:10.1109/LAWP.2015.2394295

9. Nguyen-Trong, N., A. Piotrowski, T. Kaufmann, and C. Fumeaux, "Low-profile wideband monopolar UHF antennas for integration onto vehicles and helmets," IEEE Trans. Antennas Propag., Vol. 64, 2562-2568, 2016.
doi:10.1109/TAP.2016.2551291

10. Shi, Y., A. K. Amert, and K. W. Whites, "Miniaturization of ultrawideband monocone antennas using dielectric loading," IEEE Trans. Antennas Propag., Vol. 64, 432-441, 2016.
doi:10.1109/TAP.2015.2510663