Vol. 63
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-01-12
DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Uniform Linear Array with Fewer Sensors Than Sources
By
Progress In Electromagnetics Research M, Vol. 63, 185-193, 2018
Abstract
A two-step method is proposed to estimate the direction-of-arrivals (DOAs) of quasi-stationary source signals, with a partlycalibrated uniform linear array (PC-ULA). The special structure of Toeplitz matrix is utilized to estimate the sensors' uncertainties. Then, a Khatri-Rao (KR) based multiple signal classification (MUSIC) algorithm is proposed to estimate the DOAs of source signals. Simulation results show that the proposed method renders lower root-mean-square-error (RMSE) than existing KR-based ESPRIT algorithms, especially under low signal-to-noise-ratio (SNR) and small angle separation between DOAs. It is also shown that the proposed method increases the degree-of-freedom (DOF) by one, as compared to the counterpart ESPRIT methods.
Citation
Kai-Chieh Hsu, and Jean-Fu Kiang, "DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Uniform Linear Array with Fewer Sensors Than Sources," Progress In Electromagnetics Research M, Vol. 63, 185-193, 2018.
doi:10.2528/PIERM17080306
References

1., Schmidt and R., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagat., Vol. 34, No. 3, 276-280, 1986.
doi:10.1109/TAP.1986.1143830

2. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Trans. Acous. Speech Signal Process., Vol. 37, No. 7, 984-995, 1989.
doi:10.1109/29.32276

3. Liao, B. and S. C. Chan, "Direction finding with partly calibrated uniform linear arrays," IEEE Trans. Antennas Propagat., Vol. 60, No. 2, 922-929, 2012.
doi:10.1109/TAP.2011.2173144

4. Liao, B. and S. C. Chan, "Direction finding in partly calibrated uniform linear arrays with unknown gains and phases," IEEE Trans. Aerospace Electron. Syst., Vol. 51, No. 1, 217-227, 2015.
doi:10.1109/TAES.2014.130460

5. Liao, B., L. Huang, C. Guo, and S. C. Chan, "Direction finding with partly calibrated uniform linear arrays in nonuniform noise," IEEE Sensors J., Vol. 16, No. 12, 4882-4890, 2016.
doi:10.1109/JSEN.2016.2550664

6. Zhang, X., Z. He, X. Zhang, Z. Cheng, and Y. Lu, "Simultaneously estimating DOA and phase error of a partly calibrated ULA by data reconstruction," IEEE Int. Conf. Signal Process., 399-403, 2016.

7. Mao, W. K., T. H. Hsieh, and C. Y. Chi, "DOA Estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance A Khatri-Rao subspace approach," IEEE Trans. Signal Process., Vol. 58, No. 4, 2168-2180, 2010.
doi:10.1109/TSP.2009.2034935

8. Wang, B., W. Wang, Y. Gu, and S. Lei, "Underdetermined DOA estimation of quasi-stationary signals using a partly-calibrated array," Sensors, Vol. 17, No. 4, 702, 2017.
doi:10.3390/s17040702