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DOA Estimation of Quasi-Stationary Signals
Using a Partly-Calibrated Uniform Linear Array

with Fewer Sensors than Sources

Kai-Chieh Hsu and Jean-Fu Kiang*

Abstract—A two-step method is proposed to estimate the direction-of-arrivals (DOAs) of quasi-
stationary source signals, with a partly-calibrated uniform linear array (PC-ULA). The special structure
of Toeplitz matrix is utilized to estimate the sensors’ uncertainties. Then, a Khatri-Rao (KR) based
multiple signal classification (MUSIC) algorithm is proposed to estimate the DOAs of source signals.
Simulation results show that the proposed method renders lower root-mean-square-error (RMSE) than
existing KR-based ESPRIT algorithms, especially under low signal-to-noise-ratio (SNR) and small angle
separation between DOAs. It is also shown that the proposed method increases the degree-of-freedom
(DOF) by one, as compared to the counterpart ESPRIT methods.

1. INTRODUCTION

Direction-of-arrivals (DOAs) are important information for applications in radars, wireless
communications, radio telescopes, etc. Different estimation methods have been proposed, including
those based on multiple signal classification (MUSIC) algorithm [1] and estimation of signal parameters
via rotational invariance techniques (ESPRIT) [2]. However, these algorithms may be compromised by
uncertainties in gain and phase of some sensors in the array. In [3], an ESPRIT-like algorithm was
proposed for joint estimation of sensor uncertainties and DOAs, which can resolve N − 2 signal sources
with N sensors. In [4], a refinement on [3] was proposed by iterating ESPRIT-like algorithm to reach
a near-optimal estimation of uncertainties and DOAs. Some limitation of methods was also reported,
such as the maximum sources detectable [4].

In [5], two enhancements on the method of [3] were proposed to tackle nonuniform noise powers
at different sensors. Given uncorrelated signals, specific structure of covariance matrix was exploited
to calibrate uncertainties and deal with nonuniform noise, followed by a MUSIC algorithm to estimate
the DOAs. Given correlated signals, an iterative approach was also proposed to determine the signal
subspace, then an ESPRIT-like method was adopted to estimate the DOAs. The above methods require
at least two calibrated sensors to work properly. In [6], a least squares method was proposed to jointly
estimate the phase error of a sensor, and the DOA of source signals, by using only one calibrated sensor.

Recently, a Khatri-Rao (KR) subspace was proposed to increase the degrees-of-freedom (DOFs)
of an array [7]. A KR-based MUSIC algorithm was proposed to increase the DOF of an N -element
sensor array from N − 1 to 2N − 2. A reduced-dimension method was also proposed prior to applying
the singular value decomposition (SVD) technique. However, the performance of KR-MUSIC algorithm
significantly deteriorates when uncertainties exist in gain and phase of sensors. Motivated by [3] and [7],
a KR-ESPRIT-like method [8] was proposed to jointly estimate the uncertainties of sensors and the
DOAs of source signals. The noise-removal in [7] were adopted before applying the subspace processing.
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A reduced-dimension version was also proposed by first using KR-ESPRIT-like method to estimate
uncertainties and then applying reduced-dimension method [7] prior to subspace processing.

The KR-ESPRIT-like algorithm can detect up to 2N − 3 source signals with a partly-calibrated
uniform linear array (PC-ULA) of N sensors, two of which are calibrated [8]. In this work, a two-step
KR-MUSIC algorithm is proposed to first estimate the uncertainties in gain and phase of some sensors,
then to estimate the DOAs of source signals. The proposed method can solve up to 2N − 2 source
signals by using N sensors, with two of them calibrated. This work is organized as follows. The signal
model in KR-subspace with PC-ULA is presented in Section 2, the proposed KR-MUSIC-like algorithm
is presented in Section 3, simulation results are discussed in Section 4. Finally, some conclusions are
drawn in Section 5.

2. SIGNAL MODEL IN KR-SUBSPACE WITH PC-ULA

Figure 1 shows a partly calibrated uniform linear array (PC-ULA), which is composed of N
omnidirectional sensors at spacing d. Without loss of generality, assume that the first Nc sensors
are calibrated while the last N −Nc sensors bear amplitude and phase uncertainties. Assume there are
M uncorrelated source signals. The mth signal sm is incident in the direction-of-arrival (DOA) θm, with
1 ≤ m ≤ M . The complex-valued baseband signal received at the �th time interval can be represented
as

x̄[�] = ¯̄A′ · s̄[�] + n̄[�] (1)

where ¯̄A′ is the actual array-gain matrix; s̄[�] is the source signal vector; n̄[�] is an additive white
Gaussian noise vector with zero mean and covariance matrix σ2

n
¯̄IN ; ¯̄IN is an N × N identity matrix.

The noise is assumed to be uncorrelated to the source signals.
Matrix ¯̄A′ can be further decomposed into

¯̄A′ = diag {γ1, γ2, . . . , γN} · ¯̄A (2)

where ¯̄A is the reconstructed array-gain matrix, and γn is the gain and phase uncertainties of the nth
sensor. The γn’s are compiles into an uncertainty vector

γ̄ =
[
1, 1, . . . , 1, ρ1e

jφ1, ρ2e
jφ2, ρN−Nce

jφN−Nc

]t

in which the first Nc elements are unity, and ρn and φn, with 1 ≤ n ≤ N − Nc, are uncertainties to be
calibrated. The mth column of ¯̄A is a steering vector associated with the source signal incident at θm,
namely,

ā(θm) =
[
1, ejkd sin θm , ej2kd sin θm , . . . , ej(N−1)kd sin θm

]t

Figure 1. A partly-calibrated uniform linear array (PC-ULA) of N sensors, in which the first Nc

sensors are calibrated.
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where k = 2π/λ is the wavenumber.
The source signals are assumed to be quasi-stationary and will be observed over Q non-overlapped

time frames, with each time frame containing L time intervals. The power of the mth signal in the qth
time frame can be represented as

Pqm = E
{
|sm[�]|2

}
(3)

with (q − 1)L ≤ � ≤ qL − 1 and 1 ≤ q ≤ Q.
The covariance matrix in the qth time frame can be represented as

¯̄Rq = E{x̄[�]x̄†[�]} = ¯̄A′ · ¯̄Dq · ¯̄A′† + σ2
n
¯̄IN (4)

where ¯̄Dq = diag {Pq1, Pq2, . . . , PqM}. In practice, ¯̄Rq is estimated as

˜̄̄
Rq =

1
L

qL−1∑
�=(q−1)L

x̄[�]x̄†[�] (5)

By concatenating all the columns of ¯̄Rq into an N2 × 1 vector as

ȳq = vec
{

¯̄Rq

}
= ¯̄A′

KR · P̄q + σ2
nμ̄N (6)

where P̄q = [Pq1, Pq2, . . . , PqM ]t, ¯̄A′
KR = ¯̄A′∗ � ¯̄A′ is called a generalized manifold matrix, � stands for

column-wise Kronecker product, and μ̄N = vec{ ¯̄IN}. Next, by stacking the quasi-stationary signals ȳq

over all Q time frames, we have
¯̄Y = [ȳ1, ȳ2, . . . , ȳQ] = ¯̄A′

KR · ¯̄Ψ + σ2
nμ̄N 1̄t

Q (7)

where ¯̄Ψ = [P̄1, P̄2, . . . , P̄Q] and 1̄Q is a Q × 1 vector with all entries equal to unity. By applying an
orthogonal complement matrix ¯̄Γ = ¯̄IQ − (1/Q)1̄Q1̄t

Q to ¯̄Y , the noise covariance term σ2
nμ̄N 1̄t

Q can be
eliminated to have [7]

¯̄Y ⊥ = ¯̄A′
KR · ¯̄Ψ · ¯̄Γ (8)

up which the singular value decomposition (SVD) technique is applied to obtain

¯̄Y ⊥ =
[

¯̄Es
¯̄En

]⎡
⎣

¯̄Σs 0

0 0

⎤
⎦

⎡
⎣

¯̄V †
s

¯̄V †
n

⎤
⎦ (9)

where ¯̄Es and ¯̄En are the left singular matrices associated with the nonzero singular values contained
in the diagonal matrix ¯̄Σs and zero singular values, respectively; ¯̄Vs and ¯̄Vn are the corresponding
right singular matrices. By the subspace theory, matrix ¯̄Es spans the same subspace as matrix ¯̄A′

KR
does, which is labeled as the signal subspace. Formally, these two matrices are related by an M × M
nonsingular matrix ¯̄T as

¯̄Es = ¯̄A′
KR · ¯̄T (10)

3. PROPOSED KR-MUSIC-LIKE ALGORITHM

The special structure of Toeplitz matrix is utilized to estimate the uncertainties in gain and phase of
sensors, then a KR-MUSIC algorithm is proposed to estimate the DOAs of source signals. A PC-ULA of
N sensors can be used to estimate up to 2N − 2 source signals, which is the upper bound a KR-MUSIC
algorithm can achieve with a fully-calibrated ULA [7].
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3.1. Estimation of Uncertainties

First, Eq. (4) is rewritten as
¯̄Rq = diag {γ̄} · ¯̄R′

q · diag {γ̄}† + σ2 ¯̄IN (11)

where ¯̄R′
q = ¯̄A · ¯̄Dq · ¯̄A† and diag {γ̄} is a diagonal matrix with its nth diagonal entry being the nth

entry of γ̄. The nth row of ¯̄A is

ᾱn =
[
ej(n−1)kd sin θ1 , ej(n−1)kd sin θ2, . . . , ej(n−1)kd sin θM

]

Hence, the uvth entry of ¯̄R′
q can be expressed as

R′
q,uv = ᾱu · ¯̄Dq · ᾱ†

v =
M∑

m=1

ejkd(u−1) sin θmPqmejkd(1−v) sin θm =
M∑

m=1

Pqmejkd(u−v) sin θm (12)

leading to

R′
q,uu =

M∑
m=1

Pqm

R′
q,uv = R′

q,rs if u − v = r − s (13)

which implies that ¯̄R′
q is a Hermitian Toeplitz matrix.

By substituting Eq. (12) into Eq. (11), we have

Rq,uv =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|γu|2
M∑

m=1

Pqm + σ2, u = v

γuγ∗
vR′

q,uv, u �= v

(14)

From Eqs. (13) and (14), the uncertainties in each time frame can be estimated as

γ̃q(n+1) =
(

Rq,n(n+1)

γ̃qnRq,12

)∗
, n = Nc, Nc + 1, . . . , N − 1 (15)

assuming that

γ̃q1 = γ̃q2 = . . . = γ̃qNc = 1, q = 1, 2, . . . , Q

Thus, the uncertainties are estimated as

γ̃n =
1
Q

Q∑
q=1

γ̃qn, n = Nc + 1, Nc + 2, . . . , N (16)

By substituting Eq. (16) into Eq. (11), we have

¯̄R′′
q = diag

{
˜̄γ−1

} · ¯̄Rq · diag
{
˜̄γ−1

}† = ¯̄R′
q + diag

{
σ′2

1 , σ′2
2 , . . . , σ′2

N

}
(17)

where diag
{
˜̄γ−1

}
= diag

{
1, . . . , 1, γ̃−1

Nc+1, . . . , γ̃
−1
N

}
and σ′2

n = σ2/ |γ̃n|2. To maintain a Toeplitz
structure of the matrix, the diagonal entries of ¯̄R′′

q are averaged to derive

¯̄R′′′
q = ¯̄R′

q + σ′2 ¯̄IN (18)

where σ′2 =
1
N

N∑
n=1

σ′2
n .
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3.2. Estimation of DOAs

Similar to the procedure in Eqs. (6)–(8), a KR-subspace is constructed in the following order:

ȳ′q = vec
{

¯̄R′′′
q

}
, q = 1, 2, . . . , Q

¯̄Y ′ =
[
ȳ′1, ȳ

′
2, . . . , ȳ

′
Q

]
= ¯̄AKR · ¯̄Ψ + σ′2

n μ̄N 1̄t
Q

¯̄Y ′⊥ = ¯̄Y ′ · ¯̄Γ = ¯̄AKR · ¯̄Ψ · ¯̄Γ (19)

where ¯̄AKR = ¯̄A∗ � ¯̄A. A reduced-dimension KR-subspace can also be constructed as
¯̄Y ′′⊥ = ¯̄C−1/2 · ¯̄Gt · ¯̄Y ′⊥ = ¯̄C−1/2 · ¯̄Gt · ¯̄AKR · ¯̄Ψ · ¯̄Γ = ¯̄C−1/2 · ¯̄Gt · ¯̄G · ¯̄B · ¯̄Ψ · ¯̄Γ = ¯̄C1/2 · ¯̄B · ¯̄Ψ · ¯̄Γ (20)

where ¯̄C = ¯̄Gt · ¯̄G,

¯̄GN2×(2N−1) =

⎡
⎢⎣

¯̄G0
...

¯̄GN−1

⎤
⎥⎦ , ¯̄B =

[
b̄(θ1), b̄(θ2), . . . , b̄(θM )

]

with
¯̄Gn =

[
¯̄0N×(N−1−n)

¯̄IN
¯̄0N×n

]
, n = 0, 1, . . . , N − 1

b̄(θ) =
[
e−j(N−1)kd sin θ, e−j(N−2)kd sin θ, . . . , e−j2π sin θ, 1, ejkd sin θ, ej2kd sin θ, . . . , ej(N−1)kd sin θ

]t

By applying the SVD technique on ¯̄Y ′′⊥, we have

¯̄Y ′′⊥ =
[

¯̄E′′
s

¯̄E′′
n

]⎡
⎣

¯̄Σ′′
s 0

0 0

⎤
⎦

⎡
⎣

¯̄V ′′†
s

¯̄V ′′†
n

⎤
⎦ (21)

Then, apply the MUSIC algorithm to obtain a DOA spectrum as

PKR−MUSIC(θ) =
∥∥∥ ¯̄E′′†

n · ¯̄C1/2 · b̄(θ)
∥∥∥−2

F
(22)

where −π/2 ≤ θ ≤ π/2. Fig. 2 shows the flow-chart of estimating uncertainties and DOAs with the
proposed method.

Figure 2. Flow-chart of estimating uncertainties and DOAs with proposed method.
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4. SIMULATIONS AND DISCUSSIONS

A partly calibrated ULA consisted of five sensors (N = 5) will be used in the simulations. The sensor
spacing is half a wavelength. The first two sensors are calibrated, and the last three sensors bear
uncertainties in gain and phase, namely, γ̄ = [1, 1, 0.8ejπ/5, 1.2ejπ/10, 0.6e−jπ/3]t. The effect of noise is
characterized by the signal-to-noise ratio (SNR), which is defined as [7]

SNR =

1
T

T∑
t=1

E
{∥∥∥ ¯̄A′ · s̄(t)

∥∥∥2
}

E
{
‖n̄(t)‖2

} (23)

where T = LQ.
In the first scenario, M = 4 source signals are incident from the directions of θ̄ =

[−25◦, 10◦, 20◦, 30◦]t, under SNR = 10 dB. A total of Q = 200 time frames are processed, each with
a length of L = 512; and K = 500 Monte Carlo trials will be implemented in each scenario. The
estimated uncertainties by using the proposed method are listed in Table 1. It is observed that the
variance of estimation is pretty low.

Table 1. Estimation of gain and phase uncertainties.

true value (ρ, φ) mean variance
(0.8000, 0.6283) (0.8013, 0.6264) (0.00003, 0.00003)
(1.2000, 0.3142) (1.1992, 0.3115) (0.00008, 0.00008)

(0.6000, −1.0472) (0.6016, −1.0492) (0.00005, 0.00017)
The unit of φ is rad, M = 4, Q = 200, L = 512, SNR = 10dB, 500 Monte-Carlo trials.

To compare the performance of different methods, a root-mean-square-error (RMSE) of DOA
estimation is defined as

RMSE =

√√√√ 1
KM

K∑
k=1

M∑
m=1

|θ̃km − θm|2 (24)

where θm and θ̃km are the actual DOA and the estimated DOA, respectively, of the mth source signal
in the kth trial. Fig. 3 shows the RMSE of DOA estimation under different SNRs, with the proposed
method, an KR-ESPRIT-like method [8] and its reduced-dimension (RD) version. It is observed that
the proposed method renders lower RMSE than the other two methods, under all SNRs of consideration.

Figure 4 shows the effect of frame length on the RMSE of DOA estimation. The data size is fixed at
T = LQ = 102, 400 while L is varied from 64 to 2,048, at SNR = 10 dB. It is observed that the proposed
method renders the lowest RMSE under all frame lengths of consideration. The RMSE increases when
the frame length is either large or small, possibly attributed to the estimation error in computing the
covariance matrix of the simulated source signal, of which the stationary interval lies between 300 and
700. However, the proposed method is less affected by the frame length than the other two methods.

Figure 5 shows the RMSE of DOA estimation versus different numbers of frames, with the frame
length fixed to 512 and SNR = 10 dB. It is observed that the proposed method renders the lowest
RMSE at different numbers of frames, and degrades more smoothly than the other two methods when
the number of frames becomes too small.

Next, consider scenarios with small angle separation between different source signals. Assume that
there are M = 3 source signals, the DOAs of first two are θ = −5◦ and 15◦, and the angle separation
between the second and the third ones is Δθ = 2◦ and 3◦, respectively. The frame length is L = 512
and the number of frames is Q = 200. Fig. 6 shows the success probability of DOA estimation under
different SNRs. The success probability is the ratio between the number of trials with RMSE of DOA
lower than 0.6◦ and the total number of trials. It is observed that the proposed method renders the
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Figure 3. RMSE of DOA estimation, M = 4,
Q = 200, L = 512, 500 Monte-Carlo trials at
each SNR. ——: proposed method, − • −: KR-
ESPRIT-like method, —�—: KR-ESPRIT-like
method with RD.
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Figure 4. RMSE of DOA estimation versus
frame length, M = 4, T = 102, 400, SNR = 10 dB,
500 Monte-Carlo trials at each frame length. —
—: proposed method, − • −: KR-ESPRIT-like
method, —�—: KR-ESPRIT-like method with
RD.
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Figure 5. RMSE of DOA estimates, M = 4,
L = 512, SNR = 10 dB, 500 Monte-Carlo trials at
each number of frames. ——: proposed method;
− • −: KR-ESPRIT-like method; − � −: KR-
ESPRIT-like method with RD.

-4 0 4 8 12 16 20 24 28
0%

20%

40%

60%

80%

100%
Su

cc
es

s 
Pr

ob
ab

ili
ty

 (
%

)

Figure 6. Success probability of DOA estima-
tion, M = 3, Q = 200, L = 512, 500 Monte-
Carlo trials at each SNR. ——: proposed method
(Δθ = 2◦); − • −: KR-ESPRIT-like method
(Δθ = 2◦); − � −: KR-ESPRIT-like method
with RD (Δθ = 2◦); ——: proposed method
(Δθ = 3◦); − • −: KR-ESPRIT-like method
(Δθ = 3◦); − � −: KR-ESPRIT-like method with
RD (Δθ = 3◦).

highest success probability at both angle separations. The KR-ESPRIT-like method works fine when
the angle separation is 3◦ and the SNR is high. At the angle separation of 2◦, the success probability
of the other two methods is lower than 20% at the SNRs of consideration. In comparison, the proposed
method can achieve about 70% of success probability at SNR = 8 dB.

Figure 7 shows the RMSE of DOA at different angle separations (Δθ), with SNR = 10 dB and
the other parameters are same as in Fig. 6. It is observed that when the angle separation is large, the
proposed method is slightly better than the other two methods. However, when the angle separation is
less than 3◦, the proposed method outperforms the other two more significantly.

Next, consider scenarios with more source signals than sensors. Assume M = 8, θ̄ =
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Figure 7. RMSE of DOA estimation, M =
3, Q = 200, L = 512, SNR = 10 dB, 500
Monte-Carlo trials at each angle separation. —
—: proposed method; − • −: KR-ESPRIT-like
method; − � −: KR-ESPRIT-like method with
RD.
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Figure 8. Spatial spectrum, M = 8, Q = 200,
L = 512, SNR = 10 dB. ——: proposed method ;
. . .: actual DOAs of source signals.

Table 2. Estimation of gain and phase uncertainties.

true value (ρ, φ) mean variance
(0.8000, 0.6283) (0.7768, 0.6296) (0.0008, 0.0015)
(1.2000, 0.3142) (1.2076, 0.3173) (0.0026, 0.0039)

(0.6000,−1.0472) (0.5822, −1.0429) (0.0011, 0.0079)
The unit of φ is rad, M = 8, Q = 200, L = 512, SNR = 10dB, 500 Monte-Carlo trials.
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Figure 9. RMSE of DOA estimation, M = 8, Q = 200, L = 512, 500 Monte-Carlo trials at each SNR.
——: proposed method; − • −: KR-ESPRIT-like method; − � −: KR-ESPRIT-like method with RD.

[−50◦,−30◦,−15◦,−5◦, 15◦, 25◦, 40◦, 66◦]t, SNR = 10 dB, Q = 200 and L = 512. The estimation of
gain and phase uncertainties with the proposed method is listed in Table 2. It is observed that the
mean value is sufficiently accurate, but the variances are relatively larger than those in Table 1, as the
number of source signals is equal to the maximum degree-of-freedom achievable.

Figure 8 shows a realization of DOA spectrum obtained with the proposed method, where the
spectrum is defined as log{PKR−MUSIC(θ)}, in terms of Eq. (22). It is verified that the proposed method
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can reach the upper bound of the KR-MUSIC algorithm with a fully-calibrated ULA, namely, resolving
2N − 2 sources with N sensors.

Finally, the RMSEs of DOA estimation with the proposed method as well as two other methods,
under different SNRs, are shown in Fig. 9. The frame length is 512 and the number of frames is 200. It
is observed that the proposed method achieves more accurate estimation than the other methods.

5. CONCLUSION

A KR-subspace MUSIC-like algorithm is proposed to estimate the DOAs of quasi-stationary signals with
a partly-calibrated ULA. The special structure of Toeplitz matrix is utilized to estimate the uncertainties
of gain and phase. The KR-subspace MUSIC algorithm is then applied to derive the DOA spectrum of
source signals to estimate their DOAs. Simulation scenarios are designed to verify that the proposed
method performs better than two ESPRIT-like methods at low SNR, short frame length, small number
of frames and small angle separations, respectively. It is also verified that the proposed method can
resolve up to 2N −2 source signals with N sensors, which is the maximum achievable degree-of freedom.
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