Vol. 59
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-08-18
Off -Grid DOA Estimation Based on Sparse Representation and Rife Algorithm
By
Progress In Electromagnetics Research M, Vol. 59, 193-201, 2017
Abstract
In this paper, off-grid DOA estimation based on sparse representation and Rife algorithm is presented to improve performance when the sparse signal directions are not on the predefined angular grids. The algorithm is divided into two steps. Firstly, the real-valued sparse representation of array covariance vector (RV-SRACV) algorithm is used to do off-grid DOA estimation, and it does not need to estimate the noise power. Secondly, Rife algorithm is used to correct the DOA estimation, and after that the DOA can be accurately estimated. The effectiveness and superior performance of the proposed algorithm are demonstrated in the simulation results.
Citation
Lveqiu Xu, Junli Chen, and Yang Gao, "Off -Grid DOA Estimation Based on Sparse Representation and Rife Algorithm," Progress In Electromagnetics Research M, Vol. 59, 193-201, 2017.
doi:10.2528/PIERM17070404
References

1. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1989.
doi:10.1109/TAP.1986.1143830

2. Weiss, A. J. and G. Motti, "Direction finding using esprit with interpolated arrays," IEEE Transactions on Signal Processing, Vol. 39, No. 6, 1473-1478, 1991.
doi:10.1109/78.136564

3. Viberg, M. and B. Ottersten, "Sensor array processing based on subspace fitting," IEEE Transactions on Signal Processing, Vol. 39, No. 5, 1110-1121, 1991.
doi:10.1109/78.80966

4. Massa, A., P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics - A review," IEEE Antennas and Propagation Magazine, Vol. 57, No. 1, 224-238, 2015.
doi:10.1109/MAP.2015.2397092

5. Shaghaghi, M. and S. A. Vorobyov, "An improved L1-SVD algorithm based on noise subspace for DOA estimation," Progress In Electromagnetics Research C, Vol. 29, No. 12, 109-122, 2012.

6. Carlin, M., P. Rocca, G. Oliveri, F. Viani, and A. Massa, "Directions-of-arrival estimation through Bayesian compressive sensing strategies," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 3828-3838, 2013.
doi:10.1109/TAP.2013.2256093

7. Carlin, M., P. Rocca, G. Oliveri, and A. Massa, "Bayesian compressive sensing as applied to direction-of-arrival estimation in planar arrays," Journal of Electrical and Computer Engineering, Vol. 2013, 1-12, 2013.
doi:10.1155/2013/245867

8. Rocca, P., A. M. Hannan, M. Salucci, and A. Massa, "Single-snapshot DOA estimation in array antennas with mutual coupling through a multi-scaling BCS strategy," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3203-3213, 2017.
doi:10.1109/TAP.2017.2684137

9. Yin, J. H. and T. Q. Chen, "Direction-of-arrival estimation using a sparse representation of array covariance vectors," IEEE Transactions on Signal Processing, Vol. 59, No. 9, 4489-4493, 2011.
doi:10.1109/TSP.2011.2158425

10. He, Z. Q., Q. H. Liu, L. N. Jin, and S. Ouyang, "Low complexity method for DOA estimation using array covariance matrix sparse representation," Electronics Letters, Vol. 49, No. 3, 228-230, 2013.
doi:10.1049/el.2012.4032

11. Chen, T., H. X. Wu, and Z. K. Zhao, "The real-value sparse direction of arrival estimation based on the Khatri-Rao product," IEEE Sensors Journal, Vol. 16, No. 5, 693-706, 2016.
doi:10.3390/s16050693

12. Yang, Z., L. Xie, and C. Zhang, "Off-grid direction of arrival estimation using sparse Bayesian inference," IEEE Transactions on Signal Processing, Vol. 61, No. 1, 38-43, 2011.
doi:10.1109/TSP.2012.2222378

13. Luo, X. Y., X. C. Fei, L. Gan, and P. Wei, "Off-grid direction-of-arrival estimation using a sparse array covariance matrix," Progress In Electromagnetics Research Letters, Vol. 54, 15-20, 2015.
doi:10.2528/PIERL15030306

14. Liang, Y., R. Ying, Z. Lu, and P. Liu, "Off-grid direction of arrival estimation based on joint spatial sparsity for distributed sparse linear arrays," IEEE Sensors Journal, Vol. 14, No. 11, 20981-22000, 2014.

15. Chen, T., H. X. Wu, L. M. Guo, and L. T. Liu, "A modified Rife algorithm for off gird DOA estimation based on sparse representations," IEEE Sensors Journal, Vol. 15, No. 11, 29721-29733, 2015.
doi:10.3390/s151129721

16. Song, J., Y. F. Liu, and Y. Liu, "An interpolation-based frequency estimator synthetic approach for sinusoid wave," International Conference on Wireless Communications, Networking and Mobile Computing, 1-4, 2011.

17. Zhao, Y., L. Zhang, and Y. Gu, "Array covariance matrix-based sparse Bayesian learning for off-grid direction-of-arrival estimation," Electronics Letters, Vol. 52, No. 5, 401-402, 2016.
doi:10.1049/el.2015.2931

18. He, Z. Q., Z. P. Shi, and L. Huang, "Covariance sparsity-aware DOA estimation for nonuniform noise," Digital Signal Processing, Vol. 28, No. 1, 75-81, 2014.
doi:10.1016/j.dsp.2014.02.013

19. Du, R. Y., F. L. Liu, and L. Peng, "W-L1-SRACV algorithm for Direction-Of-Arrival estimation," Progress In Electromagnetics Research C, Vol. 38, 165-176, 2013.
doi:10.2528/PIERC13022407

20. Stoica, P. and A. Nehorai, "Music, maximum likelihood, and Cramer-Rao bound," IEEE Transactions on Acoustics Speech and Signal Processing, Vol. 37, No. 5, 720-741, 1989.
doi:10.1109/29.17564