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Off-Grid DOA Estimation Based on Sparse Representation
and Rife Algorithm

Lveqiu Xu*, Junli Chen, and Yang Gao

Abstract—In this paper, off-grid DOA estimation based on sparse representation and Rife algorithm
is presented to improve performance when the sparse signal directions are not on the predefined angular
grids. The algorithm is divided into two steps. Firstly, the real-valued sparse representation of array
covariance vector (RV-SRACV) algorithm is used to do off-grid DOA estimation, and it does not need
to estimate the noise power. Secondly, Rife algorithm is used to correct the DOA estimation, and after
that the DOA can be accurately estimated. The effectiveness and superior performance of the proposed
algorithm are demonstrated in the simulation results.

1. INTRODUCTION

As one of the most important research contents in the array signal processing, direction of arrival
(DOA) estimation is widely applied in military and economic fields such as electromagnetic, sonar,
communication, seismic prospecting. The classical DOA estimation algorithms such as Multiple
Signal Classification (MUSIC) [1], Estimation Signal Parameter via Rotational Invariance Techniques
(ESPRIT) [2] and Weighted Subspace Fitting (WSF) [3] have been presented to achieve high spatial
resolution, but these algorithms require a great deal of independent identically distributed sampling
data and higher signal-to-noise ratio for DOA estimation.

Recently, the technique of sparse representation provides a new perspective for signal processing,
which can achieve signal reconstruction with only a small amount of observation data. The compressive
sensing (CS) framework is one of the most promising solutions in many electromagnetic problems [4],
e.g., DOA estimation. Thanks to the development of CS framework, a number of DOA estimation
algorithms based on sparse representation have been presented. The most successful one is L1-SVD [5],
which exploits the L1 norm to reconstruct sparse signals and applies singular value decomposition (SVD)
to reduce computational complexity. In [6–8], the Bayesian compressive sensing (BCS) framework is
successfully applied in DOA estimation. In [9], a algorithm called L1-SRACV is presented for DOA
estimation, based on sparse representation of array covariance vectors. The L1-SRACV algorithm
does not need to determine the control parameter and has a higher stability. However, it suffers from
a high computational cost because of the multiple measurement vectors (MMV) model. In [10], the
authors present a low complexity algorithm for DOA estimation by using array covariance vectors sparse
representation (LC-SRACV). Khatri-Rao product and sparse representation are combined to estimate
DOA, and after that MMV problem can be changed to single measurement vector (SMV) problem.
But it refers to complex operations, thus still has a heavy calculation burden. The real-valued sparse
DOA estimation algorithm based on the Khatri-Rao product (L1-RVSKR) is presented in [11]. The
complex data of the array can be transformed to a real-valued one by using a unitary transformation,
and after that the calculation burden is reduced. However, LC-SRACV and L1-RVSKR algorithms need
to estimate the noise power, and the robustness of these algorithms should be improved.
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No matter what sparsity methods are used, the true DOAs are assumed to be on the predefined
angular grids. When the assumption fails, the performance of such methods deteriorates due to the
mismatch. Therefore, some off-grid DOA estimation algorithms are presented in [12–14], e.g., off-
grid sparse Bayesian inference (OGSBI) [12] is used to estimate off-grid DOA. Based on first-order
Taylor series, these algorithms construct a finite dictionary to eliminate the influence caused by off-grid
problem. However, these algorithms still have a large computational burden because of the iterative
process. In [15], the authors present an M-Rife algorithm for off-grid DOA estimation which is inspired
by the frequency estimation approach using Rife algorithm [16], and in this way, the estimation accuracy
can be improved effectively.

In this paper, we attempt to obtain the off-grid DOA estimation by using real-valued sparse array
covariance vector and Rife algorithm. There are two steps in our algorithm. Firstly, the approximate
sparse solution is found by real-valued sparse representation of array covariance vectors (RV-SRACV)
algorithm, via introducing a block diagonal matrix to mitigate the effect of noise and making better
use of RV-SRACV algorithm. Then, we correct DOA estimation by using Rife algorithm, and after
that the off-grid DOA estimation is achieved. We call our algorithm RV-SRACV-OG. Compared with
the previous works, our algorithm can not only effectually enhance the robustness, but also have low
computational complexity. Furthermore, the accuracy of the algorithm is improved. The simulation
results show that the algorithm is valid and can reduce the DOA estimation errors caused by off-grid
effect.

2. DATA MODEL

Consider K narrowband far-field signals impinging on a uniform linear array (ULA) consisting of M
(M > K) sensors from directions θ = [θ1 θ2 . . . θk]. The array received signal is given by

Y(t) = AS(t) + N(t), t = 1, 2, . . . , L (1)

where S(t) = [s1(t), s2(t), . . . , sK(t)]T is the vector of incident signals; A = [a(θ1) a(θ2) . . . a(θK)] is
the M × K manifold matrix of the array; a(θK) = [1, ejϕ, . . . , ej(M−1)ϕ]T, ϕ = −2πd sin(θK)/λ. (·)T,
d and λ denote transpose, sensor spacing and wavelength of the incident signals, respectively. N(t) is
a additive complex Gaussian white noise vector, whose mean and variance are equal to zero and σ2,
respectively. L is the number of snapshots. Suppose that the incident signal is incoherent to the noise,
the covariance matrix of the array received signal is given by

RY = E
{
Y(t)YH(t)

}
= ARSAH + σ2IM (2)

where E{·}, (·)H, and IM denote mathematical expectation, conjugate transpose, and M × M identity
matrix, respectively. RS = E{S(t)SH(t)} = diag{σ2

1 , σ
2
2 , . . . , σ

2
K} is the covariance matrix of the incident

signal; σ2
K denotes signal power; diag{ · } represents diagonal matrix.

3. THE PROPOSED RV-SRACV-OG ALGORITHM

3.1. DOA Estimation Based on Sparse Representation

DOA estimation algorithms based on sparse representation are widely studied, and there are many
sparse reconstruction methods for DOA estimation. In this paper, a real-valued sparse representation
DOA estimation algorithm based on array covariance vector is proposed. We call it RV-SRACV.

The array covariance vector is complex and can be transformed to a real-valued vector via a unitary
transformation. We define the unitary transformation matrix as follows [11].

If M is even, we have

U =
1√
2

[ IM
2

PM
2

jPM
2

−jIM
2

]
(3)
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If M is odd, we have

U =
1√
2

⎡
⎢⎢⎢⎣

IM−1
2

0M−1
2

×1 PM−1
2

0T
M−1

2
×1

√
2 0T

M−1
2

×1

jPM−1
2

0M−1
2

×1 −jIM−1
2

⎤
⎥⎥⎥⎦ (4)

where I, P, and 0 denote the identity matrix, permutation matrix, and the null matrix, respectively.
With the unitary matrix U, we have the following theorem:
Theorem 1 for any M × M matrix B, if it satisfies the following equation

B = PMB∗PM (5)

then B is Hermitian per-symmetric matrix, and UBUH is real and symmetric. (·)∗ denotes the complex
conjugate.

The practical sampling covariance matrix RY is Hermitian but generally not per-symmetric,
because it is computed from finite snapshots. Therefore, the optimal Hermitian per-symmetric estimator
of RY is

R =
1
2

(RY + PMR∗
YPM ) (6)

According to theorem 1 and Equation (6), we are able to achieve the real-valued matrix via a unitary
transformation

R1 =
1
2
URUH =

1
2
U(RY + PMR∗

YPM )UH (7)

Equation (2) is substituted into Equation (7), and we have

R1 =
1
2
U

(
ARSAH + σ2IM + PM

(
ARSAH + σ2IM

)∗
PM

)
UH

=
1
2
Ψ

(
Φ(M−1)/2RSΦ(1−M)/2 +

(
Φ(M−1)/2RSΦ(1−M)/2

)∗)
ΨH + σ2IM

= ΨRe
(
Φ(M−1)/2RSΦ(1−M)/2

)
ΨT + σ2IM (8)

where Ψ = UAΦ(1−M)/2, Φ = diag{ejϕ(a1) . . . ejϕ(aK)}, Re(·) denotes the real part. According to the
theory of Khatri-Rao product transformation, applying the vectorisation operator on Eq. (8), we have

r = vec(R1) = (Ψ ◦Ψ)u + σ2vec(IM ) (9)

where u = diag{Re(Φ(M−1)/2RSΦ(1−M)/2)}, ◦ denotes Khatri-Rao product.
Then we introduce the sparse representation theory and suppose that θ = [θ1 θ2 . . . θn]

(n � K) contains all the potential directions in the spatial domain. A = [a(θ1) a(θ2) . . . a(θn)] is
the new array manifold matrix, and Φ becomes Φ = diag{ejϕ(a1) . . . ejϕ(an)}. Furthermore, we have
Ψ = UAΦ(1−M)/2. According to Equation (9) and sparse representation theory, we can establish an
over-complete dictionary Γ = Ψ ◦ Ψ. The sparse representation of real-valued array covariance vector
can be expressed as follows:

r = Γū + σ2vec(IM ) (10)

where ū is a real-valued sparse vector of size n × 1 in the spatial domain, whose non-zero positions
correspond to the directions of arrival of the signals, and we can find these positions via a convex
optimization equation, which can be expressed as follows:

min
ū

‖û‖1 s.t.
∥∥r̂− Γû− σ2vec(IM )

∥∥
2
≤ β (11)

where ‖·‖1 and ‖·‖2 denote L1 norm and L2 norm, respectively. r̂ and û are estimated values of vector
r and sparse vector ū, respectively. β is error threshold.
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However, the method needs to estimate the noise power. If σ2 is not estimated accurately, the
performance will be affected, as can be seen from Equation (11). Inspired by [17], we introduce a block
diagonal matrix, which is defined as follows:

J =

⎡
⎣ J1 0

. . .
0 JM

⎤
⎦ (12)

where the size of J is M(M − 1) × M2. Jm = [e1, . . . , em−1, em+1, . . . eM ]T, m = 1, 2, . . . ,M , with em

being a length-M column vector of all zeros except a 1 at the mth position. Then Equation (10) can
be transformed as follows:

z = Jr = JΓū (13)

accordingly, the new over-complete dictionary is Γ̄ = JΓ, and Equation (11) becomes

min
ū

‖û‖1 s.t.
∥∥ẑ− Γ̄û

∥∥
2
≤ β (14)

ẑ is estimated value of vector z. As can be seen from Equation (14), the noise power is unnecessary,
and the algorithm’s robustness is enhanced.

In practice, vector z is estimated from L snapshots. According to Equations (7), (9) and (13), we
have

ẑ = Jr̂ = Jvec
(
R̂1

)
= Jvec

(
1
2
U

(
R̂Y + PM R̂∗

YPM

)
UH

)

=
1
2
Jvec

(
UR̂YUH

)
+

1
2
Jvec

(
UPMR̂∗

YPMUH
)

=
1
2
J (U∗ ⊗ U) vec

(
R̂Y

)
+

1
2
J (U∗ ⊗ U) (PM ⊗ PM ) vec

(
R̂∗

Y

)
= V1ŷ + V2ŷ∗ (15)

where ⊗ denotes Kronecker product, and R̂Y = 1
L

L∑
t=1

YYH = RY + ΔR, ΔR is the estimated error.

V1 = J(U∗⊗U)/2, V2 = J(U∗⊗U)(PM ⊗PM )/2, ŷ = vec(R̂Y). It follows [18, 19] that Δy = vec(ΔR)
satisfies an asymptotic normal distribution

Δy ∼ ASN
(
0M2×1,

1
L

RT
Y ⊗ RY

)
(16)

where ASN(μ, σ2) denotes an asymptotic normal distribution with mean μ and variance σ2.
According to Equation (15), the estimated error Δz = ẑ−z = V1Δy+V2Δŷ∗, then we know that

V1Δy ∼ ASN
(
0M(M−1)×1,V1

(
RT

Y ⊗ RY

L

)
VH

1

)
(17)

V2Δy∗ ∼ ASN
(
0M(M−1)×1,V2

(
RY ⊗ R∗

Y

L

)
VH

2

)
(18)

the covariance matrix of V1Δy and V2Δy∗ is given by

cov(V1Δy,V2Δy∗) = V1cov(Δy,Δy∗)VH
2 (19)

where cov(x, y) denotes the covariance matrix of x and y. It can be known that V1Δy and V2Δy∗ are
dependent, so we have

Δz∼ASN
(
0M(M−1)×1,V1

(
1
L

RH
Y ⊗ RY

)
VH

1 +V2

(
1
L

RY ⊗ R∗
Y

)
VH

2 +2V1cov (Δy,Δy∗)VH
2

)
(20)

we define a matrix

W = V1

(
1
L

RH
Y ⊗ RY

)
VH

1 + V2

(
1
L

RY ⊗ R∗
Y

)
VH

2 + 2V1cov (Δy,Δy∗)VH
2 (21)
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it can be inferred that
W−1/2Δz ∼ ASN

(
0M(M−1)×1, IM(M−1)

)
(22)∥∥∥W−1/2

(
ẑ − Γ̄û

)∥∥∥2

2
∼ ASχ2(M(M − 1)) (23)

where ASχ
2(M(M − 1)) represents the asymptotic chi-square distribution with M(M − 1) degrees of

freedom.
In summary, the formula for DOA estimation is given by

min
ū

‖û‖1 s.t.
∥∥∥W−1/2ẑ− Zû

∥∥∥
2
≤ β (24)

where Z = W−1/2Γ̄ is the new over-complete dictionary. β =
√

ASχ2(M(M − 1)) can be obtained
through the function chi2inv (p,M(M − 1)) in MATLAB, and p is usually set to 0.9999. Equation (24)
can be calculated by SOC programming software packages such as CVX in MATLAB. The non-zero
positions of û correspond to the directions of arrival of the signals.

3.2. Off-Grid DOA Estimation Based on Rife Algorithm

The true DOA may not be on the discretized sampling grid, and the performance of RV-SRACV
algorithm deteriorates in the presence of such case. Inspire by [15], we use the Rife algorithm for
off-grid DOA estimation, and it can be expressed as follows:

bc = b0 +
gμ |〈Z(b0 + gμ), δ〉|

|ρ 〈Z(b0), δ〉| + |〈Z(b0 + gμ), δ〉| (25)

where bc denotes the estimated DOA by Rife algorithm, b0 the estimated DOA by RV-SRACV algorithm,
g the grid resolution, and Z(b0) the atom vectors corresponding to the angle b0. If b0 ≥ θ, μ = −1, else
μ = 1. δ denotes the residual in the RV-SRACV algorithm and can be expressed as follows:

δ = W−1/2ẑ− Zû (26)
and 〈x, y〉 denotes the inner product operation between x and y. |·| denotes absolute value. ρ is
regularization factor used to ensure the effectiveness of the Rife algorithm, and it can be set in [1.5 5].

However, the performance of the Rife algorithm is excellent when the incident signal’s DOA lies
in the middle of two discrete on-grid angles, but when the incident signal direction is approximately to
the on-grid angles, the accuracy of the Rife algorithm is reduced. It is necessary to further correct the
estimation in this situation. We define two new vectors:

ζ1 =
〈δ,Z(b0 − 0.5g)〉
|δ| |Z(b0 − 0.5g)| (27)

ζ2 =
〈δ,Z(b0 + 0.5g)〉
|δ| |Z(b0 + 0.5g)| (28)

where Z(b0 ± 0.5g) are two new atom vectors corresponding to the angle b0 ± 0.5g. Here we give the
scheme for the RV-SRACV-OG algorithm:
(i) Using the RV-SRACV algorithm, we obtain the estimated value b0, which corresponds to the non-

zero positions of û.
(ii) Using the Rife algorithm, we obtain the off-grid DOA estimate value bc, and it is shown in

Equation (25).
(iii) Correct the estimated value of the second step:

if |bc − θ| > 0.1g and bc < θ, we obtain the off-grid DOA estimation:

θ̂ = bc + 0.5g − g(ζ2/(ρζ1 + ζ2)) (29)
if |bc − θ| > 0.1g and bc ≥ θ, we have

θ̂ = bc − 0.5g + g(ζ1/(ζ1 + ρζ2)) (30)

if |bc − θ| ≤ 0.1g, θ̂ = bc.
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4. SIMULATION

In this section, several simulations are presented to test the performance of the proposed RV-SRACV
algorithm and RV-SRACV-OG algorithm. We consider a uniform linear array whose sensors spacing
d = λ/2, and the number of sensors M = 10.

In the first simulation, the spatial spectra of the RV-SRACV algorithm is compared with L1-
SRACV [9] and L1-RVSKR [11]. Consider four uncorrelated far-field narrowband signals arriving at
the array from directions [−40◦, −20◦, 10◦, 30◦]. The grid is divided into 181 points in the range of
−90◦ to 90◦ with 1◦ intervals. The number of snapshots is 300, and the signal-to-noise-ratio (SNR) is
0 dB. From Figure 1, it is observed that all algorithms succeed in estimating the four signals, but several
pseudo-peaks appear with the L1-SRACV algorithm, and there is a slight bias in the spatial spectrum
of the L1-RVSKR algorithm. On the other hand, the RV-SRACV algorithm has no pseudo-peak and
shows better performance than L1-RVSKR, which means that the RV-SRACV algorithm’s robustness
is enhanced.
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Figure 1. Spatial spectra for L1-SRACV, L1-RVSKR and RV-SRACV algorithm.

Then, the root-mean-square-error (RMSE) corresponding to the estimations in Figure 1 versus the
number of snapshots is shown in Figure 2. The RMSE is defined as:

RMSE =

√√√√ 1
Q

1
K

Q∑
q=1

K∑
k=1

(
θ̂kq − θk

)2
(31)

where Q is the number of times of independent Monte Carlo experiments, and θ̂kq stands for the
estimated angle of the kth signal in the qth Monte Carlo trial.

The SNR is 0 dB. The number of snapshots varies from 100 to 350 with 50 steps. For each number
of snapshots, Q is 100. It can be seen from Figure 2 that the RMSEs of the three algorithms decrease
with the increase of the number of snapshots. The RMSE of RV-SRACV algorithm is smaller than the
other two algorithms under the same conditions. Conditions remain unchanged, and the running times
of the three algorithms with different numbers of snapshots are shown in Figure 3. It can be seen from
Figure 3 that the running time of RV-SRACV algorithm is the shortest, and it is illustrated in these
simulations that RV-SRACV algorithm achieves better estimation performance with lower complexity.

In the following simulation, RMSE of DOA estimation against SNR among RV-SRACV, RV-
SRACV-OG and Cramer-Rao Bound (CRB) is presented. The CRB of DOA estimation is given by [20]

CRB =
σ2

2

{
L∑

t=1

Re(XH(t)DHBDX(t))

}−1

(32)
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where X = diag{s1(t), . . . , sK(t)}, B = I − A(AHA)−1AH, D = [ ∂A
∂θ1

, . . . , ∂A
∂θk

].
Consider a far-field narrowband signal that the true DOA is off-grid. It is selected randomly in

independent Monte Carlo simulations, and Q = 100. We set g = 2◦ and ρ = 2.5. The number of
snapshots is set to 300, and SNR varies from −10 dB to 10 dB with 2 dB steps. Figure 4 shows the
comparison of the RMSE of DOA estimation versus SNR. From the simulation result, we know that
the RMSE decreases with the increase of SNR and can be decreased by RV-SRACV-OG algorithm, and
after that it is close to RMSE of the CRB.

Other conditions remain unchanged, then the RMSE against the number of snapshots among RV-
SRACV, RV-SRACV-OG and Cramer-Rao Bound (CRB) is presented. The SNR is 0 dB, and the
number of snapshots varies from 100 to 350 with 50 steps. Figure 5 shows the comparison of the RMSE
of DOA estimation versus number of snapshots. From the simulation result, we know that for the
off-grid signal DOA estimation, the RV-SRACV-OG algorithm performs better than the RV-SRACV
algorithm. From Figures 4 and 5, it is easy to know that the proposed RV-SRACV-OG algorithm can
estimate the off-grid DOA, and the algorithm still has better performance under the conditions of low
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signal-to-noise ratio and lower number of snapshots.
In the final simulation, the detection probability of DOA versus the number of impinging signals

between RV-SRACV-OG and OGSBI [12] is presented. The SNR is 0 dB. The number of snapshots is
300, and Q = 100. We set g = 2◦ and ρ = 2.5. The number of impinging signals varies from 1 to 8 with
1 step. The directions of impinging signals are off-grid and randomly chosen from −90◦ to 90◦. The
detection probability is equal to the number of times that the average estimation error is less than 0.5
in 100 experiments, and we define the average estimation error as follows:

E =
1
K

K∑
k=1

∣∣∣(θ̂kq − θk

)∣∣∣ (33)

where E denotes the average estimation error. From Figure 6, we see that detection probabilities of the
two algorithms decrease with the increase of the number of impinging signals. The simulation illustrates
that the detection probability of the proposed algorithm is superior to OGSBI.
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Figure 6. Detection probability versus the number of impinging signals.

5. CONCLUSION

In this paper, we propose a off-grid DOA estimation based on sparse representation and Rife algorithm
called RV-SRACV-OG. The algorithm is divided into two parts. The first one is RV-SRACV algorithm
based on real-valued sparse representation of array covariance vectors. It has better performance than
L1-SRACV and L1-RVSKR algorithm, can decrease the computational burden and eliminate the false
peaks by a unitary transformation and a block diagonal matrix, respectively. The second one is Rife
algorithm. It can correct the DOA estimation when the true DOA is not on the discretized sampling
grids. Finally, the simulation results show that the proposed algorithm is effective and performs better
than OGSBI. The algorithm may be applied to practical applications in the near future.
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