Vol. 69
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-08-14
A Compact Ultra-Wideband Bandpass Filter with Sharp Roll-off Based on CPW-to-Microstrip Coupling Structure
By
Progress In Electromagnetics Research Letters, Vol. 69, 127-132, 2017
Abstract
In this paper, a compact ultra-wideband bandpass filter using a back to back Coplanar Waveguide (CPW)-to-microstrip transition structure is proposed. Compared with traditional ultra-wideband bandpass filters using hybrid structures, the proposed filter has a sharper selectivity because of two transmission zeros located at the lower and upper edges of the passband, respectively, generated by a modified T-shaped stub. Moreover, to further improve its out-of-band performance open stubs are introduced to produce extra transmission zeros at high frequency. A prototype of the proposed filter is fabricated and measured. The results show that the proposed filter achieves a bandwidth of 133% from 2.4 to 11.9 GHz, and the selectivity (skirt factor) is optimized from 50% to 92% compared to a former ultra-wideband (UWB) bandpass filter (BPF) with a similar structure. Besides, the proposed filter can offer some other advantages such as good return loss, low insertion loss, stable group delay, and compact size (16×7.55mm2). This filter can be a good candidate for UWB applications.
Citation
Qiong Wang, Chunhui Shi, Xinlin Xia, Zhong Wang, and Yu Huang, "A Compact Ultra-Wideband Bandpass Filter with Sharp Roll-off Based on CPW-to-Microstrip Coupling Structure," Progress In Electromagnetics Research Letters, Vol. 69, 127-132, 2017.
doi:10.2528/PIERL17061703
References

1. Federal Communications Commission "Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,", First Report and Order, FCC 02. V48, Apr. 2002.
doi:10.1109/LMWC.2011.2160526

2. Chu, Q.-X., X.-H. Wu, and X.-K. Tian, "Novel UWB bandpass filter using stub-loaded multiple-mode resonator," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 8, 403-405, 2011.
doi:10.1109/LMWC.2010.2049481

3. Deng, H. W., Y. J. Zhao, L. Zhang, X. S. Zhang, and S. P. Gao, "Compact quintuple-mode stub-loaded resonator and UWB filter," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 8, 438-440, 2010.
doi:10.1109/LMWC.2014.2363016

4. Taibi, A., M. Trabelsi, A. Slimane, M. T. Belaroussi, and J.-P. Raskin, "A novel design method for compact UWB bandpass filters," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 1, 4-6, 2015.
doi:10.1109/LMWC.2010.2053024

5. Chu, Q.-X. and X.-K. Tian, "Design of UWB bandpass filter using stepped-impedance stub-loaded resonator," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 9, 501-503, 2010.
doi:10.1002/mop.23860

6. Chen, L.-Y., C.-H. Lee, and C.-I. G. Hsu, "Novel UWB BPF design using modified trisection MMR," Microw. Opt. Technol. Lett., Vol. 50, 2904-2907, 2008.
doi:10.1163/156939309787604463

7. Wang, I.-C., C.-H. Lee, and C.-I. G. Hsu, "Design of band-notched UWB BPF with very wide upper stopband using combined λ/4 TSSIR," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 183-194, 2009.
doi:10.1049/el:20060789

8. Hu, H. L., X. D. Huang, and C. H. Cheng, "Ultra-wideband bandpass filter using CPW-to-microstrip coupling structure," Electron. Lett., Vol. 42, No. 10, 586-587, 2006.
doi:10.1002/mop.27663

9. Wang, K., S. M. Wong, and Q.-X. Chu, "A compact UWB CPW bandpass filter with short-ended H-shaped resonator and controllable notched band," Microwave. Opt. Technol. Lett., Vol. 55, No. 7, 1577-1581, 2013.

10. Xia, X., Y. Liu, H. Lin, T. Yang, and H. Jin, "Novel UWB BPF with a controllable notched band using hybrid structure," IEICE Electronics Express, Vol. 14, No. 6, 1-6, 2017.
doi:10.1002/mop.29551

11. Ghazali, A. N., M. Sazid, and S. Pal, "A miniaturized microstrip-to-CPW transition based UWB-BPF with shaped roll-off and minimum insertion loss," Microw. Opt. Technol. Lett., Vol. 58, No. 2, 289-293, 2016.
doi:10.1049/el.2015.0958

12. Ghazali, A. N., M. Sazid, and S. Pal, "Compact broadband balun-based UWB-BPF with minimum insertion loss and sharp selectivity," Electron. Lett., Vol. 51, No. 15, 1174-1175, 2015.
doi:10.1049/el.2015.0449

13. Li, J., C. Ding, F. Wei, and X. W. Shi, "Compact UWB BPF with notch band based on SWHMSIW," Electron. Lett., Vol. 51, No. 17, 1338-1339, 2015.
doi:10.1002/mmce.20798

14. Mirzaee, M., B. S. Virdee, and S. Noghanian, "Compact ultra-wideband bandpass filter with variable notch characteristics based on transversal signal-interaction concepts," Int. J. RF Microwave Comput-Aid Eng., Vol. 24, 549-559, 2014.
doi:10.1049/el.2011.2658

15. Feng, W. J., W. Q. Che, and T. F. Eibert, "Ultra-wideband bandpass filter based on transversal signal-interaction concepts," Electron Lett., Vol. 24, 1330-1331, 2011.
doi:10.1163/156939310791285254

16. Fallahzadeh, S. and M. Tayarani, "A new microstrip UWB bandpass filter using defected microstrip structures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 893-902, 2010.
doi:10.1587/elex.13.20160165

17. Lin, H., H. Peng, X. Xia, T. Yang, and H. Jin, "A novel ultra-wideband bandpass filter using defected microstrip structures," IEICE Electron. Expr., Vol. 13, No. 7, 1-6, 2016.
doi:10.1163/156939309789566950

18. Tang, I.-T., D.-B. Lin, C.-M. Li, and M.-Y. Chiu, "Compact pentagon ultra-wideband bandpass filter with good out-of-band performance," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1695-1706, 2009.