Vol. 70
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-10-03
Scattering of Non-Diffracting Vortex Electromagnetic Wave by Typical Targets
By
Progress In Electromagnetics Research Letters, Vol. 70, 139-146, 2017
Abstract
In the field of radar target detection, vortex electromagnetic (EM) wave carrying orbital angular momentum (OAM) has drawn great attention in recent years because of its prospect to improve the capacity of information acquisition. As a typical vortex EM wave, the high-order Bessel vortex beam (HOBVB) has the properties of non-diffraction propagation, small central spot diameter, good direction, and long propagation distance. This study investigates the scattering of non-diffracting HOBVB by radar targets. The mathematical description of the electromagnetic field components of the arbitrarily incident HOBVB are given. The surface integral equations for solving the scattering problems involving typical radar targets are established. The effects by OAM intrinsic mode characteristics on the radar scattering cross section are simulated. This investigation is expected to provide useful guidance for revealing EM scattering mechanism in the OAM domain.
Citation
Mei Ping Yu, Yiping Han, and Zhiwei Cui, "Scattering of Non-Diffracting Vortex Electromagnetic Wave by Typical Targets," Progress In Electromagnetics Research Letters, Vol. 70, 139-146, 2017.
doi:10.2528/PIERL17060504
References

1. Yao, A. M. and M. J. Padgett, "Orbital angular momentum: Origins, behavior and applications," Adv. Opt. Photon., Vol. 3, 161-204, 2011.
doi:10.1364/AOP.3.000161

2. Swartzlander, G. A. and C. T. Law, "Optical vortex solitons observed in Kerr nonlinear media," Phys. Rev. Lett., Vol. 69, 2503-2506, 1992.
doi:10.1103/PhysRevLett.69.2503

3. Franke-Arnold, S., L. Allen, and M. Padgett, "Advances in optical angular momentum," Laser & Photon. Rev., Vol. 2, 299-313, 2008.
doi:10.1002/lpor.200810007

4. Mitri, F. G., "Arbitrary scattering of an acoustical high-order Bessel trigonometric (non-vortex) beam by a compressible soft fluid sphere," Ultrasonics, Vol. 53, 956-961, 2013.
doi:10.1016/j.ultras.2012.12.008

5. Dardari, D. and V. Tralli, "High-speed indoor wireless communications at 60 GHz with coded OFDM," IEEE Transactions on Communications, Vol. 47, No. 11, 1709-1721, 1999.
doi:10.1109/26.803506

6. Li, R. X., C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, "Scattering of a high-order Bessel beam by a sphere," 10th International Symposium on Antennas, Propagation & EM Theory, 833-836, 2012.

7. Durnin, J., J. Miceli, and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett., Vol. 58, No. 15, 1499-1501, 1987.
doi:10.1103/PhysRevLett.58.1499

8. Mitri, F. G., "Acoustic scattering of a high-order Bessel beam by an elastic sphere," Ann. Phys., Vol. 323, No. 11, 2840-2850, 2008.
doi:10.1016/j.aop.2008.06.008

9. Mitri, F. G., "Electromagnetic wave scattering of a high-order Bessel vortex beam by a dielectric sphere," IEEE Trans. Antennas Propag., Vol. 59, 4375-4379, 2011.
doi:10.1109/TAP.2011.2164228

10. Durnin, J., "Exact solutions for nondiffraction beams. I. The scalar theory," JOSA A, Vol. 4, 651-654, 1987.
doi:10.1364/JOSAA.4.000651

11. Mishra, S. R., "A vector wave analysis of a Bessel beam," Opt. Commun., Vol. 85, 159-161, 1991.
doi:10.1016/0030-4018(91)90386-R

12. Mitri, F. G., "Electromagnetic wave scattering of a high-order Bessel vortex beam by a dielectric sphere," IEEE Trans. Antennas Propag., Vol. 59, 4375-4379, 2011.
doi:10.1109/TAP.2011.2164228

13. Sheng, X. Q., J. M. Jin, J. M. Song, and W. C. Chew, "Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 1718-1726, 1998.
doi:10.1109/8.736628

14. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.

15. Ubeda, E., J. M. Tamayo, and J. M. Rius, "Taylor-orthogonal basis functions for the discretization in method of moments of second kind integral equations in the scattering analysis of perfectly conducting or dielectric objects," Progress In Electromagnetics Research, Vol. 119, 85-105, 2011.
doi:10.2528/PIER11051715

16. Mittra, R., Computer Techniques for Electromagnetics, Pergamon Press, 1973.

17. Gibson, W. C., The Method of Moments in Electromagnetics, Chapman & Hall Taylor & Francis Group, 2008.

18. Volakis, J. L. and K. Sertel, Integral Equation Methods for Electromagnetics, SciTech Publishing, Inc., 2012.

19. Rao, S. M., D. R. Wilton, and A. W. Glisso, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

20. Harrington, R. F., Field Computation by Moment Methods, Macmillan, 1968.

21. Taylor, J. M., "On the concept of near field radar cross section," Proceedings of IEEE Transactions on Antennas and Propagation Society International Symposium, 1172-1175, IEEE, Montreal, Quebec, Canada, 1997.

22. Taylor, J. M., "On the concept of near field radar cross section," IEEE Microwave Magazine, Vol. 8, No. 2, 77-82, April 2007.

23. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., SciTech Publishing, Inc., 2004.