
Progress In Electromagnetics Research Letters, Vol. 70, 139–146, 2017

Scattering of Non-Diffracting Vortex Electromagnetic Wave
by Typical Targets
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Abstract—In the field of radar target detection, vortex electromagnetic (EM) wave carrying orbital
angular momentum (OAM) has drawn great attention in recent years because of its prospect to improve
the capacity of information acquisition. As a typical vortex EM wave, the high-order Bessel vortex beam
(HOBVB) has the properties of non-diffraction propagation, small central spot diameter, good direction,
and long propagation distance. This study investigates the scattering of non-diffracting HOBVB by
radar targets. The mathematical description of the electromagnetic field components of the arbitrarily
incident HOBVB are given. The surface integral equations for solving the scattering problems involving
typical radar targets are established. The effects by OAM intrinsic mode characteristics on the radar
scattering cross section are simulated. This investigation is expected to provide useful guidance for
revealing EM scattering mechanism in the OAM domain.

1. INTRODUCTION

Currently, radar information carrier primarily refers to EM wave at microwave band. And information
is mainly modulated in time, frequency or polarization domain [1]. When EM beam’s phase wave front
has a non-planar structure, its capacity of information transmission and acquisition will be improved by
modulating necessary information [2]. Coming from an extension of the concept of optical vortex, vortex
beam carrying OAM [3] has drawn great attention in recent years due to its helical structure wave front
phase. EM vortex structure of the helical structure front can be described in a rotational phase factor
exp(imϕ), where ϕ is the azimuth angle around the beam axis and m is the intrinsic value of the orbital
angular momentum which is used to describe the OAM states [4]. Different intrinsic value corresponds
to a different phase distribution of intrinsic mode. Since the number of OAM mode can be any value, in
theory, more information can be modulated by using the same carrier frequency, and the capacity of EM
wave in information acquisition can be improved [5]. When target is illuminated by OAM-carrying radio
beams, the result is the same as it’s irradiated by traditional plane wave from continuous multiple angles.
Then the capacity of the specific spatial diversity of target can be improved. Further integrating radar
signals by expanding high-bandwidth, it is expected to achieve more desirable dimensional imaging. As
well known, scattering characteristics of target are the bases of radar detection and recognition. The
current study mainly focused on frequency, angle and polarization domain [6]. The aim of this paper is
to investigate the scattering characteristics of target in OAM domain. With the development of laser
shaped beams and the tremendous expansion of their applications, there has been a growing interest in
the study of EM scattering by various targets illuminated by non-diffracting beams due to their special
characteristics, for instance they can propagate over a characteristic length without spreading and are
able to wholly reform at some distance beyond the obstruction as long as the whole beam is not blocked
if they encounters an obstruction [7, 8]. Among several possible functional descriptions of OAM modes,
the HOBVB, which is strictly a special solution of the Helmholtz equation, have a number of remarkable
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properties, such as non-diffraction propagation, small central spot diameter, high intensity, long depth
of field, good direction, and long propagation distance [9].

In this paper the surface integral equation method is applied to investigate the scattering of a
non-diffraction vortex EM HOBVB by typical targets, including a spheroid and an aircraft. In the
following, Section 2 presents the essential formulations of the non-diffraction vortex EM HOBVB and
SIE. Section 3 shows the numerical results of this work, and Section 4 is the conclusion.

2. FORMULATIONS

Figure 1 shows the geometry of the scattering problem under study. Since the coordinate system of the
targets is usually selected as the global coordinate system in the actual study, the coordinate system of
the beam relative to the targets is often arbitrary. For the sake of convenient description, let’s define
two Cartesian coordinate systems. The particles are attached to a coordinate system Oxyz, and the
incident beam is attached to OBuvw. The beam center OB is located at (x0, y0, z0) in the Cartesian
coordinate system of the targets Oxyz.

J

Figure 1. Geometry of the scattering problem under study.

2.1. Unpolarized High-Order Bessel Vortex Beam

For the description of a Bessel beam, Durnin [10] first gives scalar equation which satisfies the wave
equation. An HOBVB is a field of electromagnetic whose amplitude is described by the cylindrical
Bessel function of the first kind Jm(·) of order m. The scalar expression and its intensity in transverse
plane of the HOBVB in its own Cartesian coordinate system OBuvw can be described by:

A = A0Jm (krr) exp [i (kww + mφ)] (1)

I = |Jm (krr)|2 (2)

where parameters kr = k sinβ and kw = k cos β are the transverse and axial wave numbers, respectively,
with β being the half-cone angle of the beam and λ being the wave length of the beam, which is related
to the wave number k as k = 2π/λ. Also, φ = tan−1(v/u) is the phase angle, and r =

√
u2 + v2 is the

radial distance to a point in the transverse plane (u, v).
When the wavelength is much smaller than the size of the central spot of the beam, i.e.,

kr � k, the scalar expression of the HOBVB can provide satisfactory results. Fig. 2 displays the
3-D distribution of intensity for different intrinsic values (m) of the OAM in the OBuv plane with a
size of 10.0mm × 10.0mm. The relevant parameters are β = 25◦ and λ = 1.0 mm. As can be seen
from Fig. 2, for the fundamental zero-order (m = 0) Bessel beam, the intensity distribution consists
of a series of concentric rings with a bright central core, but for the high-order (m ≥ 1) Bessel vortex
beams, their intensity distributions have a dark central core surrounded by concentric rings, and the
radius of the inner ring increases with the order.

If kr ≈ k, the scalar expression proves to be inaccurate to describe such an HOBVB, and the vector
nature of electromagnetic waves must be taken into account. After some arithmetic manipulation
according to the vector Maxwell’s equations and Lorenz’ gauge condition [11, 12], the general form of
an EM HOBVB propagating along axis w in its own Cartesian coordinate system OBuvw is given by:
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(a) Intensity (m=0) (b) Intensity (m=1) (c) Intensity (m=2)

Figure 2. 3-D distribution of intensity for different order Bessel beams.
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where E0 and H0 are the amplitudes of the electric field and magnetic field strength, with Z being the
wave impedance in background medium, respectively. Especially deserving to be mentioned, a parallel
translation of the Cartesian coordinates x = u− x0, y = v − y0, and z = w − z0 is applied to transform
the description of an EM HOBVB in terms of vectors components (Eu, Ev , Ew) and (Hu,Hv,Hw) from
its own Cartesian coordinate system OBuvw to that in the Cartesian coordinate system of the target.

2.2. Surface Integral Equation Method

Now we consider the scattering problem involving an arbitrarily shaped target, as shown in Fig. 1.
According to the equivalence principle [13], from the surface electric currents, we can evaluate the fields
at any position outside the target by calculating the strict scattering field equation:

Esca
0 = Z0L0 (J) (9)

Hsca
0 = K0 (J) (10)
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where the operators L0 and K0 are defined as

L0(X) = ik0

∫∫
S

[
X +

1
k2
0

∇ (∇′ · X)]G0dS ′

K0(X) = −
∫∫

S
X × G0dS ′

where k0 = ω
√

ε0μ0 and G0 = eik0R/4πR are the wave number and Green’s function in free space, with
ω being the angular frequency of incident beam.

The field outside S can be formulated using the upper Green’s function method, which leads to the
following electric field integral equation (EFIE) and magnetic field integral equation (MFIE):

−Z0t̂ · L0 (J) = t̂ · Einc (11)

J− n̂ × K0 (J) = n̂ × Hinc (12)

Here we employ the combined field integral equation (CFIE), which combines the EFIE and MFIE in
the following form:

cEFIE + Z0 (1 − c) MFIE (13)

where the combination parameter c ranges from 0 to 1 and can be chosen to be any value within this
range to remove the interior resonance. We have found c = 0.2 to be an overall good choice according
to some studies have been done on the choosing an optimum c [14].

At this point, we use the the MOM to solve the SIE established above numerically [15–18]. In
implementation, the most suitable basis functions called RWG basis functions [19] are used, and the
equivalent electric currents J can be expanded as

J =
N∑

n=1

Jnfn (14)

where N is the total number of edges on the surface of the particle; fn are the RWG basis functions;
Jn are the expansion coefficients yet to be determined. Using the standard Galerkin’s method [20], we
obtain a full linear system of equations:

[A] {J} = {b} (15)

where the elements of matrix [A] and the elements of vector {b} are defined as

Amn = −cZ0

∫∫
S
fm · L0 (fn) dS + Z0 (1−c)

∫∫
S
fm · [fn − n̂ × K0 (fn)] dS (16)

bm = c

∫∫
S
fm · EincdS − Z0 (1−c)

∫∫
S
fm · (n̂×Hinc

)
dS (17)

The SIE code developed here can simulate scattering electric currents over the triangular surface mesh
elements.

Subsequently, as a characteristic value for the scattering of complex target illuminated by arbitrary
incident wave, the results to be presented are in terms of the radar scattering cross section (RCS)
and three-dimensional (3-D) distribution of the intensity for the scattered electric fields in the far-field
region. The radar scattering cross section is defined as [21–23]:

σ = lim
r→∞4πr2

∣∣∣Esca
far

∣∣∣2
|Einc|2 (18)
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3. NUMERICAL RESULTS

Since the EM scattering of a non-diffracting HOBVB by nonspherical targets has not been reported, no
available numerical results can be used for comparison to illustrate the validity of the proposed method.
Nevertheless, we can consider a special case, letting m = 0. In this case, the vector expressions of an
HOBVB become those of a zero order bessel beam (ZOBB). Now, we consider the EM scattering of an

(a) (b)

Figure 3. Comparison of the DSCSs for a spheroidal particle obtained from the SIE and that from the
GLMT: (a) E-plane, (b) H-plane.

(a) (b)

Figure 4. Effects of the order on the RCS: (a) E-plane and (b) H-plane.

     m=1               m=2               m=3 

Figure 5. The plots are for a 3-D directivity plots in the far-field. The intrinsic value of the orbital
angular momentum is varied from 1 to 3, respectively.
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on-axis incident ZOBB with a half-cone β = 15◦ by a perfectly electrically conducting (PEC) spheroidal
particle. The semimajor axis and semiminor axis of the spheroid are a = 2.0λ and b = 1.0λ. Fig. 3
presents the computed RCS as a function of the scattering angle in both the E-plane and the H-plane by

Figure 6. 3-D solid model of a aircraft and the discrete model.

(a) (b)

Figure 7. Effects of the order m on the RCS: (a) E-plane and (b) H-plane.

m=1                     m=2                      m=3 

m=4                   m=5                     m=6 

Figure 8. The plots are for a 3-D directivity plots in the far-field. The intrinsic value of the orbital
angular momentum is varied from 1 to 6, respectively.
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using the proposed SIE. For comparison, the results obtained using the generalized Lorenz-Mie theory
(GLMT) are given in the same figure. Excellent agreements are observed between them.

Next, the spheroid considered above is taken as an example, and the effects of the order of the
beam on the RCS are analyzed. Fig. 4 shows the effects of the OAM on the RCS distributions for both
the E-plane and H-plane. It is found that the RCS decreases as the intrinsic value of the OAM of the
beam increases. Fig. 5 also presents the 3-D distribution of the intensity for the scattered fields in the
far-field region.

Then the numerical results for the EM scattering of a HOBVB by a certain type of aircraft model
are presented. Fig. 6(a) shows the 3-D solid model of an aircraft, and Fig. 6(b) presents the discrete
model with about 10834 triangle patches on its surface. Then, we use the parallel MOM to calculate the
RCS. Fig. 7 displays the RCS distributions at different intrinsic value of the orbital angular momentum,
while Fig. 8 shows the 3D directivity plots of the aircraft for the far-field scattering by a HOBVB with
different OAM.

4. CONCLUSION

In summary, the non-diffracting vortex EM Wave by several typical targets has been investigated by
using the SIE. The incident unpolarized EM HOBVB is represented by vector expressions in terms of
the electric and magnetic fields. As an example, the effects of the OAM intrinsic mode characteristics
on the RCS and 3-D plots of the far-field scattering for a spheroid are analyzed. Also the RCS and 3D
directivity plots for the far-field scattering for a typical aircraft model illuminated by a HOBVB are
presented. These results could be used as a reference for other research on the scattering characteristics
and EM scattering mechanism in the OAM domain of complex radar target by non-diffraction vortex
beam.
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