Vol. 61
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-10-30
Control of a MOS Inverter by Out-of-Band Pulsed Microwave Excitation
By
Progress In Electromagnetics Research M, Vol. 61, 185-195, 2017
Abstract
An intentional focusing of High-Power Microwave (HPM) energy on microelectronic systems can produce effects that will potentially upset or damage the target. However, the physical mechanisms at work within the device are not often well understood. We provide a detailed understanding of the physical mechanisms involved in a common-source Metal Oxide Semiconductor (MOS) transistor inverter when Pulsed Microwave Excitation (PME) in a frequency range from 10 MHz to 1 GHz is applied on the gate terminal. Our study is based on the measurements of the current waveforms on all transistor access and explains the MOS response with and without the Radio-Frequency (RF) interference.
Citation
Clovis Pouant, Jeremy Raoult, Patrick Hoffmann, Laurent Chusseau, and Francois Torres, "Control of a MOS Inverter by Out-of-Band Pulsed Microwave Excitation," Progress In Electromagnetics Research M, Vol. 61, 185-195, 2017.
doi:10.2528/PIERM17053102
References

1. Ni, G., B. Gao, and J. Lu, "Research on high power microwave weapons," IEEE Asia-Pacific Microwave Conference, 10-14, 2005.

2. Backstrom, M. and K. Lovstrand, "Susceptibility of electronic systems to high-power microwaves: Summary of test experience," IEEE Trans. Electromagn. Compat., Vol. 46, No. 3, 396-403, 2004.
doi:10.1109/TEMC.2004.831814

3. Hwang, S.-M., J.-I. Hong, and C.-S. Huh, "Characterization of the susceptibility of integrated circuits with induction caused by high power microwaves," Progress In Electromagnetics Research, Vol. 81, 61-72, 2008.
doi:10.2528/PIER07121704

4. Wang, H., J. Li, H. Li, K. Xiao, and H. Chen, "Experimental study and spice simulation of CMOS inverters latch-up effects due to high power microwave interference," Progress In Electromagnetics Research, Vol. 87, 313-330, 2008.
doi:10.2528/PIER08100408

5. Tsai, H.-C., "Reliable study of digital IC circuits with margin voltage among variable DC power supply, electromagnetic interference and conducting wire antenna," Microelectron. Reliab., Vol. 43, No. 12, 2001-2009, 2003.
doi:10.1016/j.microrel.2003.08.010

6. Forcier, M. and R. Richardson, "Microwave-rectification RFI response in field-effect transistors," IEEE Trans. Electromagn. Compat., Vol. 21, No. 4, 312-315, 1979.
doi:10.1109/TEMC.1979.303772

7. Richardson, R., "Quiescent operating point shift in bipolar transistors with AC excitation," IEEE J. of Solid-State Cir., Vol. 14, No. 6, 1087-1094, 1979.
doi:10.1109/JSSC.1979.1051320

8. Richardson, R., "Modeling of low-level rectification RFI in bipolar circuitry," IEEE Trans. Electromagn. Compat., Vol. 21, No. 4, 307-311, 1979.
doi:10.1109/TEMC.1979.303771

9. Richardson, R., V. Puglielli, and R. A. Amadori, "Microwave interference effect in bipolar transistors," IEEE Trans. Electromagn. Compat., Vol. 17, No. 4, 216-219, 1975.
doi:10.1109/TEMC.1975.303426

10. Jović, O., C. Maier, and A. Barić, "High-voltage PMOS transistor model for prediction of susceptibility to conducted interference," IEEE Trans. Electromagn. Compat., Vol. 53, No. 1, 53-62, 2011.
doi:10.1109/TEMC.2010.2076817

11. Pouant, C., J. Raoult, and P. Hoffmann, "Large domain validity of MOSFET microwave-rectification response," IEEE 10th International Electromagnetic Compatibility of Integrated Circuits, 232-237, 2015.

12. Holloway, M., Z. Dilli, N. Seekhao, and J. Rodgers, "Study of basic effects of HPM pulses in digital CMOS integrated circuit inputs," IEEE Trans. Electromagn. Compat., Vol. 54, No. 5, 1017-1027, 2012.
doi:10.1109/TEMC.2012.2188720

13. Op’t Land, S. T., M. Ramdani, R. Perdriau, M. Leone, and M. Drissi, "Simple, Taylor-based worst-case model for field-to-line coupling," Progress In Electromagnetics Research, Vol. 140, 297-311, 2013.
doi:10.2528/PIER13041207

14. Sicard, E. and J. Dienot, "Issues in electromagnetic compatibility of integrated circuits: Emission and susceptibility," Microelectron. Reliab., Vol. 45, No. 9, 1277-1284, 2005.
doi:10.1016/j.microrel.2005.07.057

15. Tsividis, Y. and C. McAndrew, Operation and Modeling of the MOS Transistor, Oxford Univ. Press, 2011.

16. Cheng, Y., M. Deen, and C.-H. Chen, "MOSFET modeling for RF IC design," IEEE Trans. Elect. Dev., Vol. 52, No. 7, 1286-1303, 2005.
doi:10.1109/TED.2005.850656

17. Kwon, I., M. Je, K. Lee, and H. Shin, "A simple and analytical parameter-extraction method of a microwave MOSFET," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 6, 1503-1509, 2002.
doi:10.1109/TMTT.2002.1006411