Vol. 58
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-07-28
Energy-Efficient Communication in Large Scale Antenna Systems: Impact of Variable User Capacity and Number of Transmission Antennas
By
Progress In Electromagnetics Research M, Vol. 58, 205-213, 2017
Abstract
Energy-efficient transmission is fast becoming a critical factor in designing future mobile broadband cellular communication systems. This research work examines the constraints with regard to the achievable throughput and energy efficiency that can be attained on the use of precoding-based massive MIMO systems, bearing in mind the effect of some key performance impacting parameters. We first introduced an absolute energy efficiency-based model to evaluate the deep-down relationship among the packet length, the Bit error rate (BER) and throughput. Then, by means of simulation with cyclic coordinated search algorithm, optimal achievable throughput and energy efficiency performance have been shown and demonstrated for variable capacity of users and number of transmission antennas. This work is expected to be of enormous importance to practical system design on the use of massive MIMO antenna technology for data throughput and energy efficiency maximization in future 5G systems.
Citation
Joseph Isabona, and Viranjay M. Srivastava, "Energy-Efficient Communication in Large Scale Antenna Systems: Impact of Variable User Capacity and Number of Transmission Antennas," Progress In Electromagnetics Research M, Vol. 58, 205-213, 2017.
doi:10.2528/PIERM17052306
References

1. SMART 2020 "Enabling the low carbon economy in the information age,", 2010, Available at: www.smart2020.org/_assets/files/02_Smart2020Report.pdf.
doi:10.1109/MCOM.2011.5783984

2. Han, C., T. J. Harrold, S. M. D. Armour, I. Krikidis, S. Videv, P. Grant, H. Haas, J. Thompson, I. Ku, C.-X. Wang, T. Le, M. Nakhai, J. Zhang, and L. Hanzo, "Green radio: Radio techniques to enable energy-efficient wireless networks," IEEE Communication Magazine, Vol. 49, No. 6, 46-54, June 2011.
doi:10.1109/TCOMM.2013.051313.121249

3. Han, T. and N. Ansari, "On optimizing green energy utilization for cellular networks with hybrid energy supplies," IEEE Transactions on Wireless Communications, Vol. 12, No. 8, 3872-3882, 2013.
doi:10.1109/TCOMM.2013.051313.121249

4. "Community power using mobile to extend the grid,", Available online at: http://www.gsmworld.com/documents/gpfm_communitypower11whitepaperlores.pdf.

5. 3gpp r3-100162 "Overview to LTE energy saving solutions to cell switch off/on," 3GPP RAN3 Meeting, Valencia, Spain, Jan. 2010.
doi:10.1109/TWC.2014.012414.121106

6. Dong, W., C. Chen, X. Liu, Y. He, Y. Liu, J. Bu, and X. Xu, "Dynamic packet length control in wireless sensor networks," IEEE Transaction on Wireless Communication, Vol. 13, 1172-1181, 2014.

7. Wei, D., L. Yunhao, Z. Zhiwei, L. Xue, C. Chun, and B. Jiajun, "Link quality aware code dissemination in wireless sensor networks," IEEE Transaction on Parallel Distribution Systems, Vol. 25, 1776-1786, 2014.
doi:10.1109/JSEN.2016.2517933

8. Kim, D., D. Kim, and S. An, "Source authentication for code dissemination supporting dynamic packet size in wireless sensor networks, sensors," Sensors, Vol. 16, No. 7, 1-22, 2016.

9. Wei, D., Y. Jie, and Z. Pingxin, "Exploiting error estimating codes for packet length adaptation in low-power wireless networks," IEEE Transaction Mobile in Computing, Vol. 14, 1601-1614, 2015.

10. Nandi, A. and S. Kundu, "Optimal transmit power in wireless sensor networks using MRC space diversity in rayleigh fading channel," Proc. International Conference on Industrial and Information Systems (ICIIS), 19-24, 2010.
doi:10.1007/s11277-010-9992-9

11. Martorell, G., F. Riera-Palou, and G. Femenias, "Cross-layer fast link adaptation for MIMO-OFDM based WLANs," Wireless Personal Communication, Vol. 56, 599-609, 2011.

12. Halperin, D., B. Greenstein, A. Sheth, and D. Wetherall, "Demystifying 802.11n power consumption," Proceeding of the 2010 International Conference on Power Aware Computing and Systems, HotPower’10, 1-5, Berkeley, CA, USA, 2010.

13. Saker, L., S. E. Elayoubi, and H. O. Scheck, "System selection and sleep mode for energy saving in cooperative 2G/3G networks," Vehicular Technology Conference Fall, 1-5, Sep. 2009.

14. Tombaz, S., P. Monti, K. Wang, A. Vastberg, M. Forzati, and J. Zander, "Impact of backhauling power consumption on the deployment of heterogeneous mobile networks," IEEE Global Telecommunications Conference (GLOBECOM), 1-5, 2011.
doi:10.1155/2015/170854

15. Behjati, M., M. H. Alsharif, R. Nordin, and M. Ismail, "Energy efficient and high capacity tradeoff in distributed antenna system for a green cellular networks," Journal of Computer Networks and Communications, Vol. 2015, 1-9, 2015.

16. Isabona, J. and V. M. Srivastava, "Downlink massive MIMO systems: Achievable sum rates and energy efficiency perspective for future 5G systems," Wireless Personal Communication, Vol. 2017, 1-18, May 2017.
doi:10.1109/JSAC.2016.2550338

17. Buzzi, S., I. Chih-Lin, T. E. Klein, H. Vincent Poor, C. Yang, and A. Zappone, "A survey of energy-efficient techniques for 5G networks and challenges ahead," IEEE Journal on Selected Areas in Communications, Vol. 34, No. 4, 697-709, Apr. 2016.

18. Auer, G., O. Blume, V. Giannini, et al. "D2.3: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown," EARTH, 2010.
doi:10.1109/MCOM.2010.5621969

19. Correia, L., D. Zeller, O. Blume, D. Ferling, Y. Jading, I. Godor, G. Auer, and L. Van Der Perre, "Challenges and enabling technologies for energy aware mobile radio networks," IEEE Communications Magazine, Vol. 48, No. 11, 66-72, 2010.

20. Frenger, P., P. Moberg, J. Malmodin, Y. Jading, and I. Godor, "Reducing energy consumption in LTE with Cell DTX," Vehicular TechnologyConference Proceedings, 2011. VTC 2011-Spring Budapest. 2011 IEEE73rd, 1-5, 2011.

21. Holtkamp, H., G. Auer, and H. Haas, "On minimizing base station power consumption," 2011 IEEE Vehicular Technology Conference (VTC Fall), 2011.
doi:10.1016/j.optcom.2008.03.013

22. Parker, M. C. and S. D. Walker, "Differential temperature Carnot heat analysis shows that computing machines are thermodynamically irreversible," Optical Communication, Vol. 281, 3440-3446, 2008.

23. Parker, M. C. and S. D. Walker, "Road mapping ICT: An absolute energy efficiency metric, optical communication networks,", Vol. 3, No. 8, 2011.

24. Heliot, F., M. A. Imran, and R. Tafazolli, "Energy-efficiency based resource allocation for the orthogonal multiuser channel," Proc. IEEE Vehicular Technology Conference (VTC Fall), Quebec City, Canada, Sep. 2012.

25. Zhang, X., S. Zhou, Z. Niu, and X. Lin, "An energy-efficient user scheduling scheme for multiuser MIMO systems with RF chain sleeping," IEEE WCNC, 169-174, 2013.

26. Hoydis, J., S. Ten Brink, and M. Debbah, "Comparison of linear precoding schemes for downlink massive MIMO," Proc. of the 2012 IEEE International Conference on Communications (ICC 2012), Ottawa, Canada, Jun. 2012.
doi:10.1109/TWC.2012.122212.120086

27. Xu, J. and L. Qiu, "Energy efficient optimization for MIMO broadcast channels," IEEE Transactions on Wireless Communications, Vol. 12, No. 2, 690-701, Feb. 2013.
doi:10.1109/TWC.2009.081123

28. Kim, H., C. B. Chae, G. de Veciana, J. Robert, and W. Heath, "A cross-layer approach to energy efficiency for adaptive MIMO systems exploiting spare capacity," IEEE Transactions on Wireless Communications, Vol. 8, No. 8, 4264-4275, Aug. 2009.