Vol. 58
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-07-02
Principles of Ideal Wideband Reflectarray Antennas
By
Progress In Electromagnetics Research M, Vol. 58, 57-64, 2017
Abstract
The principles of ideal wideband RAAs are determined through the idea of distortion-less radiation of a modulated pulse. Two conditions for the cells and one condition for the location of the feed are obtained. The conditions are discussed and clarified by some examples. Each cell requires its own phase at center frequency and its own phase derivative in the desired bandwidth. Some relations are obtained and discussed for the range of required phase derivative of the cells.
Citation
Mohammad Khalaj-Amirhosseini, "Principles of Ideal Wideband Reflectarray Antennas," Progress In Electromagnetics Research M, Vol. 58, 57-64, 2017.
doi:10.2528/PIERM17051003
References

1. Huang, J. and J. A. Encinar, Reflectarray Antennas, IEEE/John Wiley & Sons, 2008.

2. Encinar, J. A., "Design of two-layer printed reflectarray using patches of variable size," IEEE Trans. Antennas Propag., Vol. 49, No. 10, 1403-1410, Oct. 2001.
doi:10.1109/8.954929

3. Encinar, J. A. and J. A. Zornoza, "Broadband design of three-layer printed reflectarrays," IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1662-1664, 2003.
doi:10.1109/TAP.2003.813611

4. Munson, R. E. and H. Haddad, "Microstrip reflectarray for satellite communication and RCS enhancement and reduction,", U.S. patent 4,684,952, Aug. 1987.

5. Carrasco, E., M. Barba, and J. A. Encinar, "Reflectarray element based on aperture-coupled patches with slots and lines of variable length," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 820-825, 2007.
doi:10.1109/TAP.2007.891863

6. Pozar, D. M., "Wideband reflectarrays using artificial impedance surfaces," IEE Electron. Lett., Vol. 43, No. 3, 148-149, 2007.
doi:10.1049/el:20073560

7. Carrasco, E., J. A. Encinar, and M. Barba, "Bandwidth improvement in large reflectarrays by using true-time delay," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2496-2503, 2008.
doi:10.1109/TAP.2008.927559

8. Hasani, H., M. Kamyab, and A. Mirkamali, "Broadband reflectarray antenna incorporating disk elements with attached phase-delay lines," IEEE Antennas Wireless Propag. Lett., Vol. 9, 156-158, 2010.
doi:10.1109/LAWP.2010.2044473

9. Malfajani, R. S. and Z. Atlasbaf, "Design and implementation of a broadband single-layer reflectarray antenna with large-range linear phase elements," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1442-1445, 2012.
doi:10.1109/LAWP.2012.2228147

10. Chen, Q. Y., S. W. Qu, X. Q. Zhang, and M. Y. Xia, "Low-profile wideband reflectarray by novel elements with linear phase response," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1545-1547, 2012.
doi:10.1109/LAWP.2012.2232899

11. Arshad, M. K. and F. A. Tahir, "Optimum microstrip reflectarray unit cell design for wide-band operation," 11-th International Conference on Frontiers of Information Technology, 150-153, 2013.

12. Tian, C., Y. C. Jiao, and W. Liang, "A broadband reflectarray using phoenix unit cell," Progress In Electromagnetics Research Letters, Vol. 50, 67-72, 2014.
doi:10.2528/PIERL14093003

13. Yoon, J. H., Y. J. Yoon, W. S. Lee, and J. H. So, "Broadband microstrip reflectarray with five parallel dipole elements," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1109-1112, 2015.
doi:10.1109/LAWP.2015.2394810

14. Hamzavi-Zarghani, Z. and Z. Atlasbaf, "A new broadband single-layer dual-band reflectarray antenna in X-and Ku-bands," IEEE Antennas Wireless Propag. Lett., Vol. 14, 602-605, 2015.
doi:10.1109/LAWP.2014.2374351

15. Yu, A., F. Yang, A. Z. Elsherbeni, J. Huang, and Y. Rahmat-Samii, "Aperture efficiency analysis of reflectarray antennas," Microwave and Optical Technology Letters, Vol. 52, No. 2, 364-372, February 2010.
doi:10.1002/mop.24949