Vol. 58
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-07-19
Effects of Reentry Plasma Fluctuation on Polarization Properties of Electromagnetic Waves
By
Progress In Electromagnetics Research M, Vol. 58, 171-181, 2017
Abstract
Fluctuations of the reentry plasma sheath can affect the propagation of Electromagnetic waves. The relations between fluctuations and the propagation of electromagnetic waves are analyzed. The effects on polarization propertiesin L-band, S-band and Ka-band during a typical reentry process are studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory together. Results show that in L-band and S-band, the effects increase with the altitude, while in Ka-band, the effects decrease with altitude. The effects at high altitude above 60 km are prominent in L-band and S-band, while the effects at middle and low altitude below 60 km in Ka-band are obvious. The effects in L-band and S-band are much bigger than that in Ka-band and can affect the signal properties of TT&C systems significantly, while the effects in Ka-band are much milder. The waves with large oblique incident angle can encounter much more severe conditions than that with small angle.
Citation
Xinglai Wang, Zhiwei Liu, and Guojiang Xia, "Effects of Reentry Plasma Fluctuation on Polarization Properties of Electromagnetic Waves," Progress In Electromagnetics Research M, Vol. 58, 171-181, 2017.
doi:10.2528/PIERM17050101
References

1. Rybak, J. P. and R. J. Churchill, "Progress in reentry communications," IEEE Transactions on Aerospace & Electronic Systems, Vol. 7, 879-894, 1970.

2. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation inplasma," IEEE Transactions on Antennas and Propagation, Vol. 9, No. 1, 29-34, 1991.
doi:10.1109/8.64431

3. Gregolre, D. J., J. Santoru, and R. W. Schumacher, "Electromagnetic wave propagation in unmagnetized plasmas," Hydrological Research Letters, 1992.

4. Manningm, R. M., "Analysis of electromagnetic wave propagationin a magnetized re-entry plasma sheath via the kinetic equation," TM-2009-216096, NASA Glenn Research Center: Cleveland, 2009.

5. Liu, J. F., X. L. Xi, G. B. Wan, et al. "Simulation of electromagnetic wave propagtion through plasma sheath using the moving-window finite-difference time-domain method," IEEE Transactions on Plasma Science, Vol. 39, No. 3, 852-855, 2011.
doi:10.1109/TPS.2010.2098890

6. Shi, L., B. Guo, Y. Liu, and J. Li, "Characteristic of plasma sheath channel and its effect on communication," Progress In Electromagnetics Research, Vol. 123, 321-336, 2012.
doi:10.2528/PIER11110201

7. Schroeder, L. C., "Gemini reentry communications experiment," NASA paper presented at Third Symposium on the Plasma Sheath (Boston, Mass.), 1965.

8. Scharfman, W. E., "The use of Langmuir probes to determine the electron density surrounding re-entry vehicles final report," NASA-CR-6608, 1965.

9. National Aeronautics and Space Administration "The entry plasma sheath and its effects on space vehicle electromagnetic systems Volume I," ASA-SP-252, Virginia, Hampton, 1970.

10. Akey, N. D. and A. E. Cross, "Radio blackout alleviation and plasma diagnostic results from a 25000 foot per second blunt-body reentry," TN D-5615, 1-44, NASA, Washington, 1970.

11. Weaver, W. L. and J. T. Bowen, "Entry trajectory, entry environment, and analysis of spacecraft motion for the RAM C-3 flight experiment," NASA-TMX-2562, 1972.

12. Vidmar, R., "On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers," IEEE Transactions on Plasma Science, Vol. 18, No. 4, 733-741, 1990.
doi:10.1109/27.57528

13. Laroussi, M. and J. R. Roth, "Numerical calculation of the reflection,absorption and transmission of microwaves by a nonuniform plasmaslab," IEEE Transactions on Plasma Science, Vol. 21, No. 4, 366-372, 1993.
doi:10.1109/27.234562

14. Petrin, A. B., "On the transmission of microwaces through plasma layer," IEEE Transactions on Plasma Science, Vol. 28, No. 3, 1000-1008, 2000.
doi:10.1109/27.887768

15. Petrin, A. B., "Transmission of microwaves through magnetoactive plasma," IEEE Transactions on Plasma Science, Vol. 29, No. 3, 471-478, 2001.
doi:10.1109/27.928945

16. Kim, M. and I. D. Boyd, "Modeling of electromagnetic manipulation of plasmas for communication during reentry flight," Journal of Spacecraft Rockets, Vol. 47, No. 1, 29-35, 2010.
doi:10.2514/1.45525

17. Lontano, M. and N. Lunin, "Propagation of electromagnetic waves in a density-modulated plasma," Journal of Plasma Physics, Vol. 45, No. 2, 173-190, 1991.
doi:10.1017/S0022377800015622

18. Lontano, M. and N. Lunin, "Density-modulation effects on the propagation of an electromagnetic wave in a plasma," Journal of Plasma Physics, Vol. 48, No. 2, 209-214, 1992.
doi:10.1017/S0022377800016494

19. Busatti, E., A. Ciucci, M. D. Rosa, et al. "Propagation of electromagnetic waves in inhomogeneous plasmas," Journal of Plasma Physics, Vol. 52, No. 3, 443-456, 1994.
doi:10.1017/S0022377800027240

20. Cerri, G., F. Moglie, R. Montesi, et al. "FDTD solution of the Maxwell-Boltzman system for electromagnetic wave propagation in a plasma," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2584-2588, 2008.
doi:10.1109/TAP.2008.927505

21. Bai, B., X. Li, Y. Liu, J. Xu, L. Shi, and K. Xie, "Effects of reentry plasma sheath on the polarization properties of obliquely incident EM waves," IEEE Trans. Plasma Sci., Vol. 42, No. 10, 3365-3372, Oct. 2014.
doi:10.1109/TPS.2014.2349009

22. Kovasznay, S. G., "Turbulence in supersonic flow," Journal of the Aeronautical Sciences, Vol. 20, No. 10, 657-682, 1953.
doi:10.2514/8.2793

23. Smits, A. J. and J. P. Dussauge, Turbulent Shear Layers in Supersonic Flow, Springer, 2005.

24. Duan, L. and M. Choudhari, "Numerical study of pressure fluctuations due to a mach 6 turbulent boundary," AIAA 51st Aerospace Sciences Meeting, AIAA Paper No. 2013–0532, 2013.

25. Lin, T. C. and L. K. Sproul, "Influence of reentry turbulent plasma fluctuation on EM wave propagation," Computers & Fluids, Vol. 35, No. 7, 703-711, 2006.
doi:10.1016/j.compfluid.2006.01.009

26. Demetriades, A., "Final technical report," Advanced Penetration Program III, SAMSO-TR-72-161, 1972.

27. Ginzburg, V. L., The Propagation of Electromagnetic Waves in Plasma, 2nd Ed., Pergamon, 1970.

28. Potter, D. L., "Introduction of the PIRATE program for parametric reentry vehicle plasma effects studies," 37th AIAA Plasmadynamics and Lasers Conference, AIAA Paper No. 2006–3239, California, San Francisco, 2006.

29. Russo, A. J., "Interaction of plane electromagnetic waves with a fully ionized plasma,", SC-TM-64-64A, Sandia National Laboratories, Albuquerque, 1964.

30. Murray, A. L., "Further enhancements of the BLIMP computer code and user’s guide,", AFWAL AFWALTR-88-3010, Aerotherm Corporation, Mountain View, 1988.

31. Abbett, M. J., "RAM C-III S-band diagnostic experiment about a supersonic axisymmetric blunt body at zero incidence-analysis and user’s manual,", UM-71-34, Aerotherm Corporation, 1971.

32. Kong, J. A., Electromagnetic Wave Theory, Wiley, 1986.

33. Grantham, W. L., "Reentry plasma measurements using a four-frequency reflect meter," The Entry Plasma Sheath and Its Effects on Space Vehicle Electromagnetic Systems, 65-107, Virginia, 1970.

34. Rybak, J. P. and R. J. Churchill, "Progress in reentry communications," IEEE Transactions on Aerospace & Electronic Systems, Vol. 7, 879-894, 1970.

35. Bachynski, M. P., T. W. Johnston, and I. P. Shkarofsky, "Electromagnetic properties of high-temperature air," Proceedings of the IRE, Vol. 7, No. 5, 337-339, 1960.

36. Dix, M., "Typical values of plasma parameters around a conical re-entry vehicle,", U.S. Aerospace Corporation, El Segundo, CA, 1962.

37. Meng, H., W. B. Dou, T. T. Chen, and K. Yin, "Analysis of radome using aperture integration-surface integration method with modified transmission coefficient," J. Infrared. Millim. Te., Vol. 30, No. 2, 2009.
doi:10.1007/s10762-008-9438-6