Vol. 74
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-04-22
A Novel DNG Medium Formed by Ferromagnetic Microwire Grid
By
Progress In Electromagnetics Research B, Vol. 74, 155-171, 2017
Abstract
Effective permittivity and permeability of a medium consisting of an infinite number of ferromagnetic microwires are evaluated in this paper. Analysis is carried out with the help of local and average fields inside a unit cell. In the literature, effective permittivity of the microwire grid is obtained by assuming the grid as an impedance loaded surface. The analysis is applicable only for the case of TMz polarized normally incident wave. Proposed analysis enable us to evaluate all the three diagonal components of effective permittivity and permeability for arbitrarily incident uniform plane wave having arbitrary polarization angle. Numerical results are obtained through MATLAB, and a comparison is done with the results available in the literature for validation. Numerical results have shown a DNG like behaviour of the medium for a TMz polarized incident wave.
Citation
Tarun Kumar, and Natarajan Kalyansundaram, "A Novel DNG Medium Formed by Ferromagnetic Microwire Grid," Progress In Electromagnetics Research B, Vol. 74, 155-171, 2017.
doi:10.2528/PIERB17022004
References

1. Lindell, I. V., A. H. Sihvola, J. Kurkijarvi, and K. F. Lindman, "The last Hertzian, and a harbinger of electromagnetic chirality," IEEE Antennas Propag. Mag., Vol. 34, No. 3, 24-30, 1992.
doi:10.1109/74.153530

2. Pendry, J. B., A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

3. Smith, D. R., W. J. Padilla, N. S. C. Nemat, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

4. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

5. Walser, R. M., "Electromagnetic metamaterials," Proc. SPIE, Vol. 4467, 1-15, July 9, 2001.

6. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

7. Bose, J. C., "On the rotation of plane of polarization of electric waves by a twisted structure," Proc. R. Soc. Lond., Vol. 63, 146-152, January 1, 1898.

8. Kock, W., "Metallic delay lenses," Bell System, Technical J., Vol. 27, 58-82, 1948.
doi:10.1002/j.1538-7305.1948.tb01331.x

9. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

10. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced non-linear phenomena," IEEE Trans. on Microwave Theory Techn., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

11. Belov, P., S. Tretyakov, and A. Viitanen, "Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 8, 1153-1170, 2002.
doi:10.1163/156939302X00688

12. Christodoulou, C. and J. Kauffman, "On the electromagnetic scattering from infinite rectangular grids with finite conductivity," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 2, 144-154, 1986.
doi:10.1109/TAP.1986.1143803

13. He, Y., P. He, V. G. Harris, and V. Carmine, "Role of Ferrites in negative index metamaterials," IEEE Trans. on Magnetics, Vol. 42, No. 10, 2852-2854, 2006.
doi:10.1109/TMAG.2006.879146

14. Carbonell, J., M. H. Garcıa, and D. J. Sanchez, "Double negative metamaterials based on ferromagnetic microwires," Physical Review B, Vol. 81, 024401-1-024401-6, 2010.

15. Carignan, L., A. Yelon, and D. Menard, "Ferromagnetic nanowire metamaterials: Theory and applications," IEEE Trans. Microwave Theory Techn., Vol. 59, No. 10, 2568-2586, 2011.
doi:10.1109/TMTT.2011.2163202

16. Kumar, T., N. Kalyanasundaram, and B. K. Lande, "Analysis of the generalized case of scattering from a ferromagnetic microwire grid," Progress In Electromagnetics Research M, Vol. 35, 1-10, 2014.
doi:10.2528/PIERM13120406

17. Liberal, I., I. S. Nefedov, I. Ederra, R. Gonzalo, and S. A. Tretyakov, "Electromagnetic response and homogenization of grids of ferromagnetic microwires," J. Appl. Phys., Vol. 110, 064909-1-064909-8, 2011.
doi:10.1063/1.3658844

18. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, 69-81, Artech House, 2003.

19. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., Chap. 11, 57-606, John Wiley and Sons, 2012.

20. Wilfried, S. and W. Martin, Semiconductor Optics and Transport Phenomena, 32-33, SpringerVerlag, 2002.

21. Reynet, O., A. L. Adenot, S. Deprot, and O. Acher, "Effect of the magnetic properties of the inclusions on the high-frequency dielectric response of diluted composites," Phy. Rev. B, Vol. 66, 094412-1-094412-9, 2002.

22. Acher, O., M. Ledieu, A. L. Adenot, and O. Reynet, "Microwave properties of diluted composites made of magnetic wires with giant magneto-impedance effect," IEEE Trans. on Mag., Vol. 39, No. 5, 3085-3090, 2003.
doi:10.1109/TMAG.2003.816011