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A Novel DNG Medium Formed by Ferromagnetic Microwire Grid

Tarun Kumar1, * and Natarajan Kalyanasundaram2

Abstract—Effective permittivity and permeability of a medium consisting of an infinite number of
ferromagnetic microwires are evaluated in this paper. Analysis is carried out with the help of local and
average fields inside a unit cell. In the literature, effective permittivity of the microwire grid is obtained
by assuming the grid as an impedance loaded surface. The analysis is applicable only for the case of
TMz polarized normally incident wave. Proposed analysis enable us to evaluate all the three diagonal
components of effective permittivity and permeability for arbitrarily incident uniform plane wave having
arbitrary polarization angle. Numerical results are obtained through MATLAB, and a comparison is
done with the results available in the literature for validation. Numerical results have shown a DNG
like behaviour of the medium for a TMz polarized incident wave.

1. INTRODUCTION

The decades of the 1990s and 2000s had renewed interest and fervor in the field of electromagnetics,
due to the development of metamaterials [1–6]. The word ‘Metamaterial’ was initially presented in
University of Texas at Austin by Rodger M. Walser, in 1999 [5]. The first attempt to introduce the
concept of artificial materials in microwave engineering was made by Jagadis Chander Bose in 1898. The
first microwave experiment on twisted jute structures was conducted by him which is artificial chiral
material [7]. In 1914, Lindell et al. [1] studied an artificial chiral medium formed by an ensemble of small
wire helices. In 1948, Kock [8] put forward the concept of light weight lenses at microwave frequencies
utilizing artificial dielectric. In 1967, a Russian physicist Viktor Veselago put his revolutionary idea
about the possibility of substances with ε < 0 and μ < 0 [9]. It has been reported by many researchers
that the dispersion characteristics of the “rodded” dielectric medium, or “conducting strip medium”
has shown the characteristics like a plasma [10–12]. In 1996, Pendry et al. [2] proposed the wire
medium which consist of metallic wires arranged like a mesh. This medium acts like an artificial electric
plasma which possesses negative permittivity. In 1999, Smith et al., proposed the artificial magnetic
plasma having negative permeability [3]. By applying the approach suggested by Pendry et al. [2] on
a grid consisting of ferromagnetic microwires instead of metallic wires, it is possible to attain Double
Negative (DNG) behavior with only single type of element without using separate inclusions for negative
permittivity and permittivity. Ferrites are known to have negative permeability in certain frequency
range, subjected to the condition of ferromagnetic resonance (FMR). This property is useful in designing
DNG metamaterial with single type of inclusion only [13–15].

In this paper, effective permittivity and permeability of a medium consisting of an infinite number
of ferromagnetic microwires, as discussed in [16], are evaluated with the help of local field and average
field inside a unit cell. An artificial medium is formed by the ferromagnetic microwires placed parallel
to each other in free space as shown in Fig. 1. According to the effective medium theory, volume of
the whole medium is divided into unit cells identical in shape and size. Each unit cell is chosen such
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Figure 1. Geometry of the artificial medium formed by ferromagnetic microwires.

Figure 2. Geometry of the cross section of a unit cell inside the ferromagnetic microwire grid.

that it contains one scatterer [17]. Geometry of such unit cell is shown in Fig. 2. As discussed in [17],
the optimum value of the thickness of unit cell is equal to the diameter of the microwires 2a, while the
width and height are kept equal to the spacing among the microwires d. The effective permittivity and
permeability of the ferromagnetic microwire grid structure are reported in [17] for the normally incident
TMz polarized uniform plane wave. In [17], effective medium properties are evaluated by assuming the
microwires of the grid as made up of impedance loaded perfect electric conductors (PEC) and equivalent
sheet current density is calculated. Then, polarization and effective medium properties are obtained by
applying homogenization. The approach in [17] is limited for the case of normal incidence and TMz

polarization only. In this paper, a method for the evaluation of effective permittivity and permeability
is reported which enables us to evaluate the effective permittivity and permeability of the medium
for any arbitrarily polarized uniform plane wave incident obliquely. Scattering from a ferromagnetic
microwire grid for the generalized case consisting of an infinite number microwires is discussed in [16].
In this paper, the boundary value type solution for the scattering field coefficients obtained in [16] is
directly used to obtain the effective permittivity and permeability of the medium. Numerical results
are obtained for TMz and TEz polarizations at an angle of incidence θ0 = 45◦, and for polarization
angle α0 = 45◦ at an angle of incidence θ0 = 45◦. Variation in effective permittivity and effective
permeability is shown with respect to the operating frequency in the range of 5–15 GHz. In order to
validate the results of the proposed analysis, a comparison is done with the results available in [17] for
TMz polarization at an angle of incidence θ0 = 90◦.

1.1. Local Field and Average Field

In order to gain more insight into the problem, the topic is discussed here as given in [18]. The local
field Eloc at the surface of one of the microwire is the sum of the external field Eext (incident field)
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and the interaction field created by all the other microwires except the field of the considered reference
microwire as discussed in [16]. The local field is defined as [16, 18]:

Eloc = Eext +
+∞∑
j �=i

Eij. (1)

We can define the total field at the surface of reference microwire as

Etotal = Eloc + Es
i (2)

Here, Es
i is the scattered field of reference microwire located at position number i and Eij denotes the

electric field created by the microwire located at position number j at the surface of the microwire
located at position number i. For the case of an infinite and lossless system, the series in Eq. (1)
does not converge. More precisely, the result depends on the order of the summation. For finite
number of microwires, the result depends on the sample shape and size. Although this problem cannot
be completely resolved yet, we can avoid it if we calculate the difference of the local field and the
average field, instead of the local field as such. This is consistent with the classical approach used to
model materials which are fundamentally based on averaging of the fields. Averaging permits us to
skip irrelevant degrees of freedom that describe individual small particle. This method enables us to
formulate the macroscopic field equations and the effective medium relations.

Let us consider the artificial material as a collection of unit cells which contains only one particle.
These cell are arranged in such a manner that the entire volume of the material is composed of the sum
of total volume of unit cells. The spatial average over such a unit cell is defined as

Ê =
1
V

∫
V

E(r)dV. (3)

The integration is performed over the volume V of a unit cell, and E(r) is the microscopic electric
field. The macroscopic Maxwell equations and the corresponding boundary conditions are formulated
for these average fields. It is clear that the local field acting the surface of the microwire is different from
the average field because the average field includes the field of all microwires including the reference
microwire itself while the local field excludes the field of reference microwire. This difference is given as

Eloc − Ê = Eext − Ê
ext

+
+∞∑
j �=i

(
Eij − Êij

)
, (4)

It is observed in many applications that all sources are located far from any point inside the medium
as compared to the size of the unit cell. In such case, the difference between the field at any point in
the medium and the average of the field over a unit cell can be neglected provided that the cell size is
much less than the wavelength. Thus,

Eext − Ê
ext ≈ 0 (5)

Now, let us consider the summation in Eq. (4). If the microwire j is at a very large distance from
the microwire at i, the difference between the electric field Eij at the location of ith microwire and the
average of the same field Ê

ij
over the unit cell of ith microwire is negligible. If the size of all the unit

cells is very small in comparison to the wavelength, quasistatic approximation can be used and the field
due to distant microwires can be approximated by static field of electric dipoles that decays as 1

R3 . The
difference of the fields given by Eq. (4) decays much faster as 1

R5 . For an anisotropic periodic lattice,
the summation in Eq. (4) converges quickly to a constant. This constant depends upon the geometry
of the unit cell and a small term of the order of ( a

Rmax
)2, where a is the size of unit cell and Rmax is the

extent of the sample of composite medium. If microwires are arranged symmetrically, the summation
term in Eq. (4) tends to zero under quasistatic condition. In a nutshell, we can say that only a few
nearest microwires influence the difference between the average and local field in quasistatic condition.
Mathematically, the series in Eq. (4) converges absolutely in contrast to the series in Eq. (1). Hence,
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for a sample that contains a large number of inclusions, the summation in Eq. (4) can be completely
neglected. Therefore,

+∞∑
j �=i

(
Eij − Êij

)
≈ 0. (6)

Hence, considering the assumption made in Eqs. (5) and (6), Eq. (4) is reduced to

Eloc − Ê ≈ 0. (7)

which means that the local field at the surface of the reference microwire and average field within the
unit cell containing reference microwire acts in a similar manner in quasistatic condition provided that
the size of inclusions is much less than the wavelength.

2. FORMULATION OF THE PROBLEM

In the case of anisotropic or nonisotropic materials, constitutive parameters (i.e., ε and μ) are functions
of the direction of the applied field. For example, when each component of the electric flux density
D in dielectric materials depends on more than one component of the electric field E, such dielectrics
are called anisotropic dielectrics. The permittivity and susceptibility for such materials cannot be
represented by a single value. Instead, for example, ε takes the form of a 3 × 3 tensor, which is known
as the permittivity tensor. The electric flux density D and electric field intensity E are not parallel to
each other, and they are related by the permittivity tensor ε in a form given by [19]

D = ε.E (8)[
Dx

Dy
Dz

]
=

[
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

][
Ex

Ey
Ez

]
, (9)

or in terms of components

Dx = εxxEx + εxyEy + εxzEz, (10)

Dy = εyxEx + εyyEy + εyzEz, (11)

Dz = εzxEx + εzyEy + εzzEz. (12)

The permittivity tensor can be written as a 3 × 3 matrix [19]

ε =

⎡
⎣ εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎦ , (13)

where each entry in the matrix may be a complex number. All the entries of the permittivity tensor
are not necessarily nonzero for anisotropic materials. For some anisotropic materials, only the diagonal
elements (εxx, εyy, εzz), are nonzero which are referred to as the principal permittivity components [19].

Here, we have assumed that the medium formed by infinite number of ferromagnetic microwires
possesses only the diagonal elements (εxx, εyy, εzz) in the permittivity matrix used in our analysis. Hence,
Eqs. (10)–(12) reduces to

Dx = εxxEx, (14)

Dy = εyyEy, (15)

Dz = εzzEz. (16)

Similarly, for the permeability matrix

Bx = μxxHx, (17)

By = μyyHy, (18)

Bz = μzzHz. (19)
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Now, the effective permittivity and permeability are defined as [20–22]:

ε0ε
eff =

〈D〉V
〈E〉V

, (20)

and
μ0μ

eff =
〈B〉V
〈H〉V

, (21)

where 〈D〉V , 〈B〉V , 〈E〉V and 〈H〉V are the average values of the electric displacement, magnetic flux
density and electric and magnetic field intensity over the volume of a unit cell, respectively. In the
previous section, we have shown that the difference between the local field and average field is n eligible
under quasi-static condition. Hence, we will assume 〈E〉V � Eloc in our analysis.

For the diluted plasma, the average value of electric displacement 〈DV 〉 is obtained as [21, 22]:

〈D〉V = ε0Eloc + f 〈D〉wire , (22)

where f = (πa2/td) is called the filling factor [21]. Here, a is the radius of microwire, t the thickness
of the microwire grid, d the microwire spacing and 〈D〉wire the electric displacement averaged over the
wire. As discussed in the previous section, the difference between local field and average field within
a unit cell is negligible under quasistatic condition. As discussed in [16], the microwires of infinite
length, each with radius a and having applied internal axial magnetization H0 are placed parallel to one
another in y-z plane with the uniform spacing d as shown in Fig. 1. The reference microwire is assumed
to be placed along the z-axis and impinged upon by uniform plane wave with polarization angle α0 and
incident angle θ0. From Maxwell’s equations,

∇× H = jωD (23)

⇒ D =
1
jω

(∇× H) , (24)

and

∇× E = −jωB (25)

⇒ B = − 1
jω

(∇× E) . (26)

In cylindrical coordinates

D =
1

jωρ

⎡
⎢⎢⎢⎣

âρ ρâφ âz

∂

∂ρ

∂

∂φ

∂

∂z

Hρ ρHφ Hz

⎤
⎥⎥⎥⎦ , (27)

The z-component of D can be obtained with the help of (27) as

Dz =
1

jωρ

[
∂

∂ρ
ρHφ − ∂

∂φ
Hρ

]
(28)

As the radius of microwire is considered to be much smaller than wavelength, we assume that the
scattered field is independent of azimuthal coordinate φ. Hence, substituting ∂

∂φ = 0 in Eq. (28), we get

Dz =
1

jωρ

[
ρ

∂

∂ρ
Hφ + Hφ

]
(29)

As the continuity of the tangential fields at the surface of microwire is already verified in [16], field
components just inside the microwire are equal to the total field just outside the microwire. Hence,
we can calculate the total electric flux density at the surface of the microwire, Dwire

z with the help of
Eq. (29) by substituting Htotal

φ for Hφ in Eq. (29), which is given as

Htotal
φ = H loc

φ0
+ Hs

φ0
(30)
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where Htotal
φ0

is the φ component of the total magnetic field, and H loc
φ0

is the φ component of the local
magnetic field at the surface of the reference microwire as discussed in [16]. The local field components
can be calculated by adding the incident field to the scattered field from the other microwires at the
surface of the reference microwires. For example, The H loc

φ0
components can be represented as

H loc
φ0

= H inc
φ0

+
+∞∑

l=−∞
Hs

φl
; l �= 0. (31)

Htotal
φ can be calculated after substituting the values of H inc

φ0
, Hs

φ0
and H loc

φ0
as given in [16] into Eqs. (30)

and (31):

Htotal
φ =

j

η0

[
cos α0

{
J1 (βρ0ρ) + C0H

(2)
1 (βρ0ρ)

}
+ C0J1 (βρ0ρ)H

(2)
0 (βρ0dig)

]
. (32)

(a)

(b)

Figure 3. Real and imaginary parts of the (a) εzz component of the Effective permittivity (b) μzz

component of the Effective permeability for a grid of ferromagnetic microwires of 1 µm radius and 3mm
separation between wires for TMz Polarization.
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Finally, Dwire
z is found with the help (29) to be

Dwire
z = − 1

ωη0

[(
cos α0 + C0H

(2)
0 (βρ0dig)

) (
βρ0ρJ2 (βρ0ρ) − 2

ρ
J1 (βρ0ρ)

)
(33)

+C0

(
βρ0ρH

(2)
2 (βρ0ρ) − 2

ρ
H

(2)
1 (βρ0ρ)

)]
. (34)

Now, the z-component of the local electric field, Eloc
z , is given by

Eloc
z0

= Einc
z0

+
+∞∑

l=−∞
Es

zl
; l �= 0. (35)

Finally, εeffzz , εeffρρ and εeffφφ can be obtained with the help of Eqs. (14), (15) and (16) as

ε0ε
eff
zz =

〈Dz〉V
Eloc

z

. (36)

(a)

(b)

Figure 4. Real and imaginary parts of the (a) εφφ component of the Effective permittivity (b) μφφ

component of the Effective permeability for a grid of ferromagnetic microwires of 1 µm radius and 3mm
separation between wires for TMz Polarization.
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ε0ε
eff
ρρ =

〈Dρ〉V
Eloc

ρ

, (37)

and

ε0ε
eff
φφ =

〈Dφ〉V
Eloc

φ

. (38)

Similarly, effective permeability can be obtained by starting from Eq. (26) as

Bz =
−1
jωρ

[
d

dρ
(ρEφ) − dEρ

dφ

]
(39)

Once again, as the radius of microwire is considered to be much smaller than wavelength, we assume
that the scattered field is independent of azimuthal coordinate φ. Hence, substituting for ∂

∂φ = 0 in
Eq. (39), we get

Bz =
−1
jωρ

[
ρ

∂

∂ρ
Eφ + Eφ

]
(40)

(a)

(b)

Figure 5. Real and imaginary parts of the (a) ερρ component of the Effective permittivity (b) μρρ

component of the Effective permeability for a grid of ferromagnetic microwires of 1 µm radius and 3mm
separation between wires for TMz Polarization.
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Now, we have to calculate the total electric flux density Btotal
z with the help of Eq. (41) by substituting

Etotal
φ which is given as

Etotal
φ = Es

φ0
+ Eloc

φ0
; (41)

where Eloc
φ0

is the local field components at the surface of the reference microwire. The local field
components can be calculated by adding the incident field to the scattered field from the other microwires
at the surface of the reference microwires. For example, the Eloc

φ0
components can be represented as

Eloc
φ0

= Einc
φ0

+
+∞∑

l=−∞
Es

φl
; l �= 0. (42)

Etotal
φ can be calculated after substituting the values of Einc

φ0
, Es

φ0
and Eloc

φ0
as given in [16] into Eqs. (41)

and (42) to be

Etotal
φ = −j

[
sin α0J1 (βρ0ρ) + D0H

(2)
1 (βρ0ρ) + D0J1 (βρ0ρ) H

(2)
0 (βρ0dig)

]
(43)

(a)

(b)

Figure 6. Real and imaginary parts of the (a) εzz component of the Effective permittivity (b) μzz

component of the Effective permeability for a grid of ferromagnetic microwires of 1 µm radius and 3mm
separation between wires for TEz Polarization.
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Now, Bwire
z is found with the help of Eq. (40) to be

Bwire
z = − 1

ω

[(
sin α0 + D0H

(2)
0 (βρ0dig)

) (
βρ0ρJ2 (βρ0ρ) − 2

ρ
J1 (βρ0ρ)

)
(44)

+jD0

(
βρ0ρH

(2)
2 (βρ0ρ) − 2

ρ
H

(2)
1 (βρ0ρ)

)]
(45)

The z-component of the local magnetic field, H loc
z0 , is expressed as in [16]

H loc
z0

= H inc
z0

+
+∞∑

l=−∞
Hs

zl
; l �= 0. (46)

Now, the average magnetic flux density 〈B〉V over the volume of periodic cell is defined as [21, 22]:

〈B〉V = μ0Hloc + f 〈B〉wire . (47)

(a)

(b)

Figure 7. Real and imaginary parts of the (a) εφφ component of the Effective permittivity (b) μφφ

component of the Effective permeability for a grid of ferromagnetic microwires of 1 µm radius and 3mm
separation between wires for TEz polarization.
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Finally, μeff
zz , μeff

ρρ and μeff
φφ can be obtained with the help of Eqs. (17), (18) and (19) to be

μ0μ
eff
zz =

〈Bz〉V
H loc

z

(48)

μ0μ
eff
ρρ =

〈Bρ〉V
H loc

ρ

(49)

μ0μ
eff
φφ =

〈Bφ〉V
H loc

φ

(50)

3. NUMERICAL RESULTS

In this section, numerical results for the diagonal components of the effective permittivity and
permeability are obtained for a Cobalt based ferrite microwire grid (see Fig. 1) with the following
specifications [16, 17]: radius a = 1µm, conductivity σ = 6.7 × 105 S/m, gyromagnetic ratio γ =
2 × 1011 T−1 s−1, saturation magnetization μ0Ms = 0.55 T, magnetic loss factor δ = 0.02, internal

(a)

(b)

Figure 8. Real and imaginary parts of the (a) ερρ component of the Effective permittivity (b) μρρ

component of the Effective permeability for a grid of ferromagnetic microwires of 1 µm radius and 3mm
separation between wires for TEz polarization.



166 Kumar and Kalyanasundaram

magnetization H0 = 113.45 kA/m along the z-coordinate and an operating frequency band of 5–15 GHz
is assumed. Numerical results are obtained for TMz and TEz polarizations (i.e., α0 = 0◦ and 90◦) at
an angle of incidence θ0 = 45◦, and for polarization angle α0 = 45◦ at an angle of incidence θ0 = 45◦.
Variation in effective permittivity and effective permeability is shown with respect to the operating
frequency in the range of 5–15 GHz. A comparison of the numerical results obtained for TMz and
normal incidence is also made with the results given in [17].

3.1. TMz Polarization

Figures 3, 4 and 5 show the numerical results for εzz − μzz, εφφ − μφφ and ερρ − μρρ components of
the effective permittivity and permeability for TMz polarization, respectively. It can be seen that the
real parts of all the three diagonal components of effective permittivity and permeability are negative
in the entire range of the frequency 5–15 GHz which results in strong reflection. Further, μzz, εφφ and
μρρ remain unaffected by the effect of FMR while εzz, ερρ and μφφ depict the effect of FMR. Effect of
FMR on εzz and ερρ verifies that the dielectric properties of the medium are governed by the magnetic

(a)

(b)

Figure 9. Real and imaginary parts of the (a) εzz component of the Effective permittivity (b) μzz

component of the Effective permeability for a grid of ferromagnetic microwires of 1 µm radius and 3mm
separation between wires for α0 = 45◦ and θ0 = 45◦.
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response of the medium. The imaginary part of μzz, εφφ and μρρ is positive with a large value which
represents huge losses inside the medium. Moreover, it can be seen that Fig. 6(a) and Fig. 6(b) have
similar kind of plots for εφφ and μρρ, respectively which suggests mutual coupling among the effective
medium properties.

3.2. TEz Polarization

Figures 6, 7 and 8 show the numerical results for εzz − μzz, εφφ − μφφ and ερρ − μρρ components of
the effective permittivity and permeability for TEz polarization, respectively. It can be seen that none
of the three diagonal components of effective permittivity and permeability have negative real part
simultaneously. The real part of εzz, μφφ and ερρ are negative in the entire range of the frequency 5–
15 GHz. While Re[μzz],Re[εφφ] and Re[μρρ] remain equal to 1 and Im[μzz], Im[εφφ] and Im[μρρ] remain
equal to 0 (i.e., equal to the free space permittivity and permeability) which results in weak scattering.
Moreover, all components remain unaffected by the effect of FMR as there is no FMR inside the ferrite
medium in case of TEz Polarization. It may be seen in Fig. 4(b), Fig. 7 and Fig. 8 that the effective
permittivity and effective permeability of the medium are mutually coupled.

(a)

(b)

Figure 10. Real and imaginary parts of the (a) εφφ component of the Effective permittivity (b) μφφ

component of the Effective permeability for a grid of ferromagnetic microwires of 1 µm radius and 3mm
separation between wires for α0 = 45◦ and θ0 = 45◦.
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3.3. Arbitrary Polarization and Incident Angle

Figures 9, 10 and 11 show the numerical results for εzz − μzz, εφφ − μφφ and ερρ − μρρ components
of the effective permittivity and effective permeability for polarization angle, α0 = 45◦ and incident
angle, θ0 = 45◦, respectively. Once again, it can be seen that none of the three diagonal components
of effective permittivity and permeability have negative real parts simultaneously. However, the real
and imaginary parts of εzz, ερρ and μφφ components of effective permittivity and effective permeability
are negative in the entire range of the frequency 5–15 GHz. These plots are also similar to the case of
TMz polarization with only slightly changed magnitudes. Once again, the real parts of μzz, εφφ and μρρ

components of the effective permittivity and effective permeability remain equal to 1 with imaginary
parts equal to zero (i.e., the free space permittivity and permeability). Further, all the plots depict the
effect of FMR due to the co-polarization component in this case.

(a)

(b)

Figure 11. Real and imaginary parts of the (a) ερρ component of the Effective permittivity (b) μρρ

component of the Effective permeability for a grid of ferromagnetic microwires of 1 µm radius and 3mm
separation between wires for α0 = 45◦ and θ0 = 45◦.
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4. COMPARISON OF THE RESULTS

Figures 12(a) and 12(b) show the comparison of the numerical results of the proposed analysis with the
results of effective permittivity given in [17] for TMz polarization and normal incidence case at applied
magnetization of 113.45 kA/m. Comparison of the results verifies the negative values of the real and
imaginary parts of the effective permittivity obtained through the proposed analysis. Although the two
results are not matched quantitatively, the effect of FMR and characteristics of the plots are matched
qualitatively. This mismatch arises due to the assumption made in [17] by Liberal et al. which states
that the medium is considered to be an equivalent current sheet. There is no such assumption made in
the proposed analysis as it is based upon the tangential boundary conditions.

(a)

(b)

Figure 12. (a) Comparison of the Real parts of Effective permittivity. (b) Comparison of the
imaginary parts of Effective permittivity with the results given in [17] by Liberal et al., for the considered
ferromagnetic microwire grid for TMz polarization.
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5. CONCLUSION

The work discussed in this paper pertains to the theoretical analysis of the diagonal components of tensor
effective permittivity and permeability of a medium formed by a planar grid consisting of ferromagnetic
microwires. The analysis is carried out with the help of local and average field components within
a unit cell. The method available in the literature evaluates the effective permittivity by assuming
the microwire grid as an impedance loaded surface and then calculates the equivalent current density.
That approach is capable of evaluating the effective permittivity only for TMz polarization and normal
incidence case. On the other hand, the method discussed in this paper has analyzed effective permittivity
and permeability for an arbitrary polarization and oblique incidence. Numerical results are obtained
for the principal diagonal components of the tensor effective permittivity and permeability for TMz,
TEz and arbitrary polarizations at an angle of incidence θ0 = 45◦ through MATLAB. Numerical results
have shown that the medium formed by a ferromagnetic microwire grid behaves as a DNG medium
for a frequency band of 5–10 GHz only for TMz polarization. For other polarizations, the real part
of effective permittivity and permeability are not negative simultaneously. However they are found to
be negative individually. Numerical results of the proposed analysis, specialized to the case of normal
incidence and TMz, are compared with the results available in the literature. The results obtained in
this paper have shown remarkable similarity with the results available in the literature and are thus
validated.
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