Vol. 56
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-04-21
Dual-Band Composite Wideband Absorbing Material for Broadband Antenna in-Band Radar Cross Section Reduction
By
Progress In Electromagnetics Research M, Vol. 56, 71-79, 2017
Abstract
A composite wideband absorbing material (WAM) covering dual bands is designed, to reduce the in-band radar cross section (RCS) for broadband antenna in this paper. The upper layer is a traditional absorber while the lower one is a dual-band frequency selective surface (FSS), which is formed by a square ring and an improved Jerusalem cross structure. The absorbing band has been broadened to 112% compared with the magnetic sheet without FSS. Over C and X bands, the absorption rate is over 90%. By using the FSS-based WAM as the ground plane of a Vivaldi antenna, substantial RCS reduction is obtained from 2-18 GHz. Moreover, the RCS is reduced remarkably over -80°-80° incident angles except for minority angles, with the radiation performance preserved at the same time. The experimental results are in good agreement with the simulated ones.
Citation
Mao Long, Wen Jiang, and Shu-Xi Gong, "Dual-Band Composite Wideband Absorbing Material for Broadband Antenna in-Band Radar Cross Section Reduction," Progress In Electromagnetics Research M, Vol. 56, 71-79, 2017.
doi:10.2528/PIERM17021502
References

1. Seman, F. C., R. Cahill, and V. Fusco, "Salisbury screen absorber with angular and polarization insensitive resonant frequency," European Conference on Antenna and Propagation (EUCAP), 1556-1559, 2009.

2. Zhang, J. J., J. H. Wang, M. Chen, and Z. Zhang, "RCS reduction of patch array antenna by electromagnetic band-gap structure," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1048-1051, 2012.
doi:10.1109/LAWP.2012.2215832

3. Wang, F.-W., S.-X. Gong, S. Zhang, X. Mu, and T. Hong, "RCS reduction of array antennas with radar absorbing structures," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2487-2496, 2012.
doi:10.1163/156939311798806239

4. Zhu, B., Z.Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

5. Cheng, Y.-Z., Y. Wang, Y. Nie, R.-Z. Gong, X. Xiong, and X. Wang, "Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements," J. Appl. Phys., Vol. 111, No. 4, 509, 2012.

6. Fallahzadeh, S., K. Forooraghi, and Z. Atlasbaf, "Design, simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 35, 135-144, 2012.
doi:10.2528/PIERL12071606

7. Kollatou, T. M., A. I. Dimitriadis, S. D. Assimonis, N. V. Kantartzis, and C. S. Antonopoulos, "A family of ultra-thin polarization insensitive multi-band highly absorbing metamaterial structures," Progress In Electromagnetics Research, Vol. 136, 579-594, 2013.
doi:10.2528/PIER12123106

8. Zhang, C.-F., W. Tang, X.-L. Mi, and L.-R. Chen, "Application of radar absorbing material in design of metal space frame radomes," Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Vol. 1, 222-225, 2011.
doi:10.1109/CSQRWC.2011.6036926

9. Wang, W.-T., S.-X. Gong, X. Wang, H.-W. Yuan, and J. Ling, "RCS reduction of array antenna by using bandstop FSS reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1505-1514, 2009.
doi:10.1163/156939309789476473

10. Chen, Q., J. J. Jiang, X. X. Xu, Y. He, and L. Chen, "Thin and broadband electromagnetic absorber design using resistors and capacitors loaded frequency selective surface," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 16, 2102-2111, 2012.
doi:10.1080/09205071.2012.726318

11. WasifNiaz, M., R. A. Bhatti, and I. Majid, "Design of broadband electromagnetic absorber using resistive Minkowski loops," International Burbank Conference on Applied Sciences & Technology (IBCAST), 424-428, 2013.

12. Lv, J., S.-X. Gong, F.-W. Wang, J. Luo, and Y.-X. Zhang, "RCS reduction of Quasi-Yagi antenna," Progress In Electromagnetics Research C, Vol. 53, 89-97, 2014.
doi:10.2528/PIERC14052905

13. Wang, F.-W., W. Jiang, T. Hong, H. Xue, S.-X. Gong, and Y.-Q. Zhang, "Radar cross section reduction of wideband antenna with a novel wideband radar absorbing materials," IET Microw. Antennas Propag., Vol. 8, No. 7, 491-497, 2014.
doi:10.1049/iet-map.2013.0356

14. Teni, G., N. Zhang, J. Qiu, and P. Zhang, "Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation," IEEE Antennas Wireless Propag. Lett., Vol. 12, 417-420, 2013.
doi:10.1109/LAWP.2013.2253592

15. Yan, J.-B., G. Sivaprasad, C.-R. Bruno, and B. John, "A dual-polarized 2-18-GHz vivaldi array for airborne radar measurements of snow," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 781-785, 2016.
doi:10.1109/TAP.2015.2506734

16. Saptarshi, G., "An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory," IEEE Antennas Wireless Propag. Lett., Vol. 14, 511-514, 2015.

17. Zabri, S. N., R. Cahill, and A. Schuchinsky, "Compact FSS absorber design using resistively loaded quadruple hexagonal loops for bandwidth enhancement," Electronics Letters, Vol. 51, No. 2, 162-164, 2015.
doi:10.1049/el.2014.3866

18. Yang, Z.-N., F. Luo, L. Gao, Y.-C. Qing, W.-C. Zhou, and D.-M. Zhu, "Enhanced microwave absorption properties of carbon black/silicone rubber coating by frequency-selective surface," Journal of Electronics Materials, Vol. 45, No. 10, 5017-5023, 2016.
doi:10.1007/s11664-016-4671-6