1. Ishizaka, Y., M. Nagai, T. Fujisawa, and K. Saitoh, "A photonic-plasmonic mode converter using mode-coupling-based polarization rotation for metal-inserted silicon platform," IEICE Electronics Express, Vol. 14, No. 2, 1-10, 2017.
doi:10.1587/elex.13.20160989
2. Maier, S., Plasmonics: Fundamentals and Applications, 2007.
3. Namin, F. A., Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, "Efficient design, accurate fabrication and effective characterization of plasmonic quasi-crystalline arrays of nano-spherical particles," Sci. Rep., Vol. 6, 22009, 2016.
doi:10.1038/srep22009
4. Polyakov, A., M. Zolotorev, P. J. Schuck, and H. A. Padmore, "Collective behavior of impedance matched plasmonic nanocavities," Opt. Express, Vol. 20, No. 7, 7685-7693, 2012.
doi:10.1364/OE.20.007685
5. Guo, L. and Z. Sun, "Cooperative optical trapping in asymmetric plasmon nanocavity arrays," Opt. Express, Vol. 23, No. 24, 31324-31333, 2015.
doi:10.1364/OE.23.031324
6. Martin-Cano, D., M. L. Nesterov, A. I. Fernandez-Do-minguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, "Domino plasmons for subwavelength terahertz circuitry," Opt. Express, Vol. 18, No. 1, 754-764, 2010.
doi:10.1364/OE.18.000754
7. Janipour, M., M. Karami, R. Sofiani, and F. Kashani, "A novel adjustable plasmonic filter realization by split mode ring resonators," Journal of Electromagnetic Analysis and Applications, Vol. 5, No. 12, 405-414, 2013.
doi:10.4236/jemaa.2013.512063
8. Noual, A., A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, "Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths," New Journal of Physics, Vol. 11, 103020, 2009.
doi:10.1088/1367-2630/11/10/103020
9. Willingham, B. and S. Link, "Energy transport in metal nanoparticle chains via sub-radiant plasmon modes," Opt. Express, Vol. 19, 6450-6461, 2011.
doi:10.1364/OE.19.006450
10. Boltasseva, A., T. Nikolajsen, K. Leosson, K. Kjær, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," Journal of Lightwave Technology, Vol. 23, No. 1, 413-422, 2005.
doi:10.1109/JLT.2004.835749
11. Lin, X. S. and X. G Huang, "Tooth-shaped plasmonic waveguide filters with nanometric sizes," Optics Letters, Vol. 33, No. 23, 2874-2876, 2008.
doi:10.1364/OL.33.002874
12. Luna, C., et al. "Tunable band-stop plasmonic filter based on symmetrical tooth-shaped waveguide couples," Modern Physics Letters B, Vol. 27, No. 14, 1350101, 2013.
doi:10.1142/S0217984913501017
13. Xiang, Z., et al. "A subwavelength plasmonic waveguide filter with a ring resonator," Journal of Nanomaterials, Vol. 2013, 2013.
14. Amir, S., S. R. Mirnaziry, and M. S. Abrishamian, "Numerical investigation of tunable band-pass/band-stop plasmonic filters with hollow-core circular ring resonator," Journal of the Optical Society of Korea, Vol. 15, No. 1, 82-89, 2011.
doi:10.3807/JOSK.2011.15.1.082
15. Amirreza, M., et al. "Plasmonic coaxial waveguide-cavity devices," Optics Express, Vol. 23, No. 16, 20549-20562, 2015.
doi:10.1364/OE.23.020549
16. John, D., G. Steven, N. Joshua, and D. Robert, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton University Press, 2008.
17. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time-domain Method, Artech House, 2005.
18. El Mashade, M. B. and M. N. Abdel Aleem, "Analysis of ultra-short pulse propagation in nonlinear optical fiber," Progress In Electromagnetics Research B, Vol. 12, 219-241, 2009.
doi:10.2528/PIERB08121603
19. Tian, J., R. Yang, and L. Song, "Optical properties of a Y-splitter based on hybrid multilayer plasmonic waveguide," IEEE Journal of Quantum Electronics, Vol. 50, No. 11, 898-903, 2014.
doi:10.1109/JQE.2014.2359232
20. Dong, H. M., et al. "Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves," Optics Communications, Vol. 283, No. 9, 1784-1787, 2010.
doi:10.1016/j.optcom.2009.12.076
21. Pannipitiya, A., et al. "Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure," Optics Express, Vol. 18, No. 6, 6191-6204, 2010.
doi:10.1364/OE.18.006191
22. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton University Press, 2008.
23. Zhan, G., et al. "Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities," Optics Express, Vol. 22, No. 8, 9912-9919, 2014.
doi:10.1364/OE.22.009912
24. Noual, A., et al. "Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths," New Journal of Physics, Vol. 11, No. 10, 103020, 2009.
doi:10.1088/1367-2630/11/10/103020
25. Bozhevolnyi, S. I., "Plasmonic nano-guides and circuits," Frontiers in Optics, 2008.
26. Manolatou, C., M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonance channel add-drop filters," IEEE J. Quantum Electron., Vol. 35, 1322-1331, 1999.
doi:10.1109/3.784592
27. Nady, M., "Modeling of ultra-short pulse propagation in nonlinear optical fibers,", master thesis, Al-AZHAR University, Faculty of Engineering, Dept. of Electronics and Electrical communications, 2009.
28. Li, Y. Q. and M. Xiao, "Observation of quantum interference between dressed states in an electromagnetically induced transparency," Physical Review A, Vol. 51, No. 6, 4959, 1995.
doi:10.1103/PhysRevA.51.4959
29. Xing, Z., et al. "Plasmonically induced absorption and transparency based on stub waveguide with nanodisk and Fabry-Perot resonator," Plasmonics, 1-8, 2016.
30. Wang, J., et al. "A novel planar metamaterial design for electromagnetically induced transparency and slow light," Optics Express, Vol. 21, No. 21, 25159-25166, 2013.
doi:10.1364/OE.21.025159
31. Politano, A., et al. "When plasmonics meets membrane technology," Journal of Physics: Condensed Matter, Vol. 28, No. 36, 363003, 2016.
doi:10.1088/0953-8984/28/36/363003