1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Approach and Microwave Applications, Wiley, 2005.
doi:10.1002/0471754323
2. Ji, J. K., G. H. Kim, and W. M. Seong, "Bandwidth enhancement of metamaterial antennas based on composite right/left-handed transmission line," IEEE Antennas Wireless Propag. Lett., Vol. 9, 36-39, 2010.
doi:10.1109/LAWP.2010.2041628
3. Sharma, S. K., A. Gupta, and R. K. Chaudhary, "Epsilon negative CPW-fed zeroth-order resonating antenna with backed ground plane for extended bandwidth and miniaturization," IEEE Trans. on Antennas and Propagation, Vol. 63, 5197-5203, 2015.
doi:10.1109/TAP.2015.2477521
4. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microwave and Optical Technology Lett., Vol. 58, 71-75, 2016.
doi:10.1002/mop.29494
5. Park, J. H., Y. H. Ryu, J. G. Lee, and J. H. Lee, "Epsilon negative zeroth order resonator antenna," IEEE Trans. Antennas Propag., Vol. 55, 3710-3712, 2007.
doi:10.1109/TAP.2007.910505
6. Park, J. H., Y. H. Ryu, and J. H. Lee, "Mu zero resonance antenna," IEEE Trans. Antennas Propag., Vol. 58, 1865-1875, 2010.
doi:10.1109/TAP.2010.2046832
7. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index material inspired 900 electrically tilted ultra-wideband resonator," Opt. Eng., Vol. 53, No. 10, 107104, Oct. 2014, DOI: 10.1117/1.OE.53.10.107104.
doi:10.1117/1.OE.53.10.107104
8. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Novel stacked µ-negative materialloaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 229-235, Mar. 2016.
doi:10.1017/S175907871400138X
9. Xu, H.-X., G.-M. Wang, M.-Q. Qi, C.-X. Zhang, J.-G. Liang, J.-Q. Gong, and Y.-C. Zhou, "Analysis and design of two-dimensional resonant-type composite right left handed transmission lines with compact gain-enhanced resonant antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 735-747, 2013.
doi:10.1109/TAP.2012.2215298
10. Xu, H.-X., G.-M. Wang, Y.-Y. Lv, M.-Q. Qi, X. Gao, and S. Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
doi:10.2528/PIER12122409
11. Lee, H. M., "A compact zeroth-order resonant antenna employing novel composite right/left-handed transmission-line unit-cells structure," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1377-1380, 2011.
12. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Trans. Antennas Propag., Vol. 55, 868-876, 2007.
doi:10.1109/TAP.2007.891845
13. Liu, C. C., P. L. Chi, and Y. D. Lin, "Compact zeroth-order resonant antenna based on dual-arm spiral configuration," IEEE Antennas Wireless Propag. Lett., Vol. 11, 318-321, 2012.
doi:10.1109/TAP.2011.2167907
14. Mehdipour, A., T. A. Denidni, and A. Sebak, "Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern," IEEE Trans. Antennas Propag., Vol. 62, 555-562, 2014.
doi:10.1109/TAP.2013.2290791
15. Mishra, N., A. Gupta, and R. K. Chaudhary, "A compact CPW-fed wideband metamaterial antenna using Ω-shaped interdigital capacitor for mobile applications," Microwave and Optical Technology Lett., Vol. 57, 2558-2562, 2015.
doi:10.1002/mop.29402
16. Si, L.-M., W. Zhu, and H.-J. Sun, "A compact, planar, and CPW-fed metamaterial-inspired dualband antenna," IEEE Antenna Wireless Propag. Lett., Vol. 12, 305-308, 2013.
doi:10.1109/LAWP.2013.2249037
17. Liu, W., Z. N. Chen, and X. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE Trans. on Antennas and Propag., Vol. 62, 1165-1172, 2014.
doi:10.1109/TAP.2013.2293788
18. Palandoken, M., A. Grede, and H. Henke, "Broadband microstrip antenna with left-handed metamaterials," IEEE Trans. on Antennas and Propag., Vol. 57, 331-338, 2009.
doi:10.1109/TAP.2008.2011230
19. Nasimuddin, Z., N. Chen, and X. Qing, "Substrate integrated metamaterial-based leaky-wave antenna with improved boresight radiation bandwidth," IEEE Trans. on Antennas and Propag., Vol. 61, 3451-3456, 2013.
doi:10.1109/TAP.2013.2256094
20. Sedghi, M. S., M. Naser-Moghadasi, and F. B. Zarrabi, "Microstrip antenna miniaturization with fractal EBG and SRR loads for linear and circular polarizations," International Journal of Microwave and Wireless Technologies, 1-11, 2016.
21. Chen, H.-D., C.-Y.-D. Sim, J. Y. Wu, and T.-W. Chiu, "Broadband high-gain microstrip array antennas for WiMAX base station," IEEE Trans. on Antennas and Propag., Vol. 60, 3977-3980, 2012.
doi:10.1109/TAP.2012.2201116
22. Wang, H., X. B. Huang, and D. G. Fang, "A single layer wideband U-slot microstrip patch antenna array," IEEE Antenna Wireless Propag. Lett., Vol. 7, 9-12, 2008.
doi:10.1109/LAWP.2007.914122
23. Sharma, P. and S. Gupta, "Bandwidth and gain enhancement in microstrip antenna array for 8 GHz frequency applications," 2014 Students Conference on Proc. Engineering and Systems (SCES), 1-6, Allahabad, India, May 2014.
24. Palandoken, M., "Microstrip antenna with compact anti-spiral slot resonator for 2.4 GHz energy harvesting applications," Microwave And Optical Technology Letters, Vol. 58, No. 6, 1404-1408, June 2016, DOI: 10.1002/mop.29824.
doi:10.1002/mop.29824
25. Levine, E., G. Malamud, S. Shtrikman, and D. Treves, "A study of microstrip array antennas with the feed network," IEEE Trans. Antennas Propag., Vol. 37, 426-434, 1989.
doi:10.1109/8.24162
26. Yeung, S. H., A. G. Lamperez, T. K. Sarkar, and M. S. Palma, "Comparison of the performance between a parasitically coupled and a direct coupled feed for a microstrip antenna array," IEEE Trans. Antennas Propag., Vol. 62, 2813-2818, 2014.
27. Raheem, A. and E. K. I. Hamad, "Design of compact-efficient array of patch based on metamaterial T-junction," Proc. IEEE APS, (MECAP), 1-3, Cairo, Egypt, 2010.
28. Mansouri, Z., A. S. Arezoomand, S. Heydari, and F. B. Zarrabi, "Dual notch UWB fork monopole antenna with CRLH metamaterial load," Progress In Electromagnetics Research C, Vol. 65, 111-119, 2016.
doi:10.2528/PIERC16040711
29. Lee, H. M., "A compact co-planar waveguide-fed zeroth-order resonant antenna with an improved efficiency and gain employing two symmetric unit cells," Electrical and Electronic Engineering, Vol. 1, No. 1, 12-16, 2011.
30. Kompa, G., Practical Microstrip Design and Applications, Artech House, 2005.
31. Jang, T., J. Choi, and S. Lim, "Compact coplanar waveguide (CPW)-fed zeroth-order resonant antennas with extended bandwidth and high efficiency on via-less single layer," IEEE Trans. Antennas Propag., Vol. 59, 363-372, 2011.
doi:10.1109/TAP.2010.2096191
32. Saravani, S., C. K. Chakrabarty, and N. Md Din, "Compact bandwidth-enhanced center-fed CPW zeroth-order resonant antenna loaded by parasitic element," Progress In Electromagnetics Research Letters, Vol. 66, 1-8, 2017.
doi:10.2528/PIERL16100201
33. Lee, J.-G., D.-J. Kim, and J.-H. Lee, "Compact penta-band dual ZOR antenna for mobile applications," International Journal of Antennas and Propagation, 2016.
34. Xiu, X. H., W. G. Ming, and G. J. Qiang, "Compact dual-band zeroth-order resonance antenna," Chinese Physics Letters, Vol. 29, No. 1, 014101, 2012.
doi:10.1088/0256-307X/29/1/014101