Vol. 55
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-04-03
A Fast Explicit FETD Method Based on Compressed Sensing
By
Progress In Electromagnetics Research M, Vol. 55, 161-167, 2017
Abstract
Linear equations must be solved at each time step as the explicit finite element time-domain (FETD) method is used to solve time dependent Maxwell curl equations, which leads to a huge amount of computational cost in a long period time simulation. A new scheme to accelerate the iteration solution for matrix equation is proposed based on compressed sensing (CS), in which a low rank measurement matrix is established by randomly extracting rows from mass matrix. Meanwhile, to reduce the number of measurements required, a sparse transform is constructed with the help of prior knowledge offered by the solution results of previous time steps. Numerical results of homogeneous cavity and inhomogeneous cavity are discussed to validate the effectiveness and accuracy of the proposed approach.
Citation
Qi Qi, Ming Sheng Chen, Zhixiang Huang, Xinyuan Cao, and Xian-Liang Wu, "A Fast Explicit FETD Method Based on Compressed Sensing," Progress In Electromagnetics Research M, Vol. 55, 161-167, 2017.
doi:10.2528/PIERM17021101
References

1. Lee, J. F., R. Lee, and A. C. Cangellairs, "Time-domain finite elements method," IEEE Trans. Antennas Propagat., Vol. 52, No. 3, 2190-2195, 2004.

2. Wong, M., O. Picon, and V. F. Hanna, "A finite element method based on Whitney forms to solve Maxwell equations in the time domain," IEEE Trans. Magn., Vol. 31, No. 3, 1618-1621, 1995.
doi:10.1109/20.376343

3. Rieben, R. N., G. H. Rodrigue, and D. A. White, "A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids," J. Computational Phys., Vol. 204, No. 2, 490-519, 2004.
doi:10.1016/j.jcp.2004.10.030

4. Movahhedi, M., A. Abdolali, and H. Ceric, "Optimization of the perfectly matched layer for the finite-element time-domain method," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 3, 10-12, 2007.
doi:10.1109/LMWC.2006.887240

5. Rieben, R. N., G. H. Rodrigue, and D. A. White, "High-order symplectic integration methods for finite element solutions to time dependent Maxwell equations," IEEE Trans. Antennas Propagat., Vol. 52, No. 8, 2190-2195, 2004.
doi:10.1109/TAP.2004.832356

6. He, B. and F. L. Teixeira, "Geometric finite element discretization of Maxwell equations in primal and dual spaces," Phys. Lett. A, Vol. 349, No. 1-4, 1-14, 2006.
doi:10.1016/j.physleta.2005.09.002

7. Baraniuk, R. G., "Compressive sensing," IEEE Signal Proc. Mag., Vol. 24, No. 4, 118-121, 2007.
doi:10.1109/MSP.2007.4286571

8. Chen, M. S. and F. L. Liu, "Compressive sensing for fast analysis of wide-angle monostatic scattering problems," IEEE Trans. Antennas Propagat., Vol. 10, No. 3, 1243-1246, 2011.
doi:10.1109/LAWP.2011.2174190

9. Tropp, J. A., J. N. Laska, and M. F. Duarte, "Beyond Nyquist efficient sampling of sparse band limited signals," IEEE Trans. Inf. Theory, Vol. 56, No. 1, 520-544, 2010.
doi:10.1109/TIT.2009.2034811

10. Mathelin, L. and K. A. Gallivan, "A compressed sensing approach for partial differential equations with random input data," Commun. Comput. Phys., Vol. 12, No. 4, 919-954, 2012.
doi:10.4208/cicp.151110.090911a

11. Caflisch, R. E., S. J. Osher, H. Schaeffer, and G. Tran, "PDEs with compressed solutions," arXiv preprint arXiv:1311.5850v2, 2014.

12. Tropp, J. A. and A. Gilbert, "Signal recovery from partial information by orthogonal matching pursuit," IEEE Trans. Inf. Theory, Vol. 53, No. 12, 4655-4667, 2007.
doi:10.1109/TIT.2007.909108