Vol. 55
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-04-03
Structural Optimization of Silica-Based 2 X 2 Multimode Interference Coupler Using a Real-Coded Micro-Genetic Algorithm
By
Progress In Electromagnetics Research M, Vol. 55, 169-178, 2017
Abstract
We propose a structural optimization method based on a real-coded micro-genetic algorithm to realize a weakly guided 2 × 2 multimode interference (MMI) coupler with low imbalance and excess loss over a wavelength range from 1520 to 1580 nm. The proposed method was applied to silica-based 2×2 MMI couplers with a relative refractive index difference of 5.5%. The optimized result showed an imbalance of less than 8.4×10−3 dB, an excess loss of less than 0.14 dB, and a normalized output power of more than 48% over the operation wavelength range. The proposed method achieved an optimized 2×2 MMI coupler after 250 times of propagation analysis per wavelength, which is less than 6.7% of those by the conventional methods for 4×4 and 1×4 MMI couplers, and was proven to be more effective than the conventional methods. To consider realistic optical devices, 2×2 MMI couplers whose values of structural parameters are close to the optimized values within the accuracy of typical fabrication tolerance are also analyzed. The results are comparable to those of the optimized 2×2 MMI coupler.
Citation
Takashi Yasui, Jun-ichiro Sugisaka, and Koichi Hirayama, "Structural Optimization of Silica-Based 2 X 2 Multimode Interference Coupler Using a Real-Coded Micro-Genetic Algorithm," Progress In Electromagnetics Research M, Vol. 55, 169-178, 2017.
doi:10.2528/PIERM17012204
References

1. Chen, S., X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, "Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach-Zehnder interferometer," J. Lightwave Technol., Vol. 33, No. 11, 2279-2285, June 2015.
doi:10.1109/JLT.2015.2405510

2. Bitincka, E., G. Gilardi, and M. K. Smit, "On-wafer optical loss measurements using ring resonators with integrated sources and detectors," IEEE Photon. J., Vol. 6, No. 5, 6601212, Oct. 2014.

3. Ma, Y., S. Park, L. Wang, and S. T. Ho, "Ultracompact multimode interference 3-dB coupler with strong lateral confinement by deep dry etching," IEEE. Photon. Technol. Lett., Vol. 12, No. 5, 492-494, May 2000.
doi:10.1109/68.841263

4. Sakamaki, Y., Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, "Reduction of phase-difference deviation in 90˚ optical hybrid over wide wavelength range," IEICE Electronics Express, Vol. 7, No. 3, 216-221, Feb. 2010.
doi:10.1587/elex.7.216

5. Hashizume, Y., T. Goh, Y. Inoue, K. Hamamoto, and M. Itoh, "Polarization beam splitter with different core widths and its application to dual-polarization optical hybrid," J. Lightwave Technol., Vol. 33, No. 2, 408-414, Jan. 2015.
doi:10.1109/JLT.2014.2387200

6. Fandiño, J. S. and P. Muñoz, "Manufacturing tolerance analysis of an MMI-based 90° optical hybrid for InP integrated coherent receivers," IEEE Photon. J., Vol. 5, No. 2, Apr. 2013.
doi:10.1109/JPHOT.2013.2247994

7. Uematsu, T., Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, "Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission," J. Lightwave Technol., Vol. 30, No. 15, 2421-2426, Aug. 2012.
doi:10.1109/JLT.2012.2199961

8. Han, L., S. Liang, H. Zhu, C. Zhang, and W. Wang, "A high extinction ratio polarization beam splitter with MMI couplers on InP substrate," IEEE Photon. Technol. Lett., Vol. 27, No. 7, 782-785, Apr. 2015.
doi:10.1109/LPT.2015.2392383

9. Kleijn, E., E. M. van Vliet, D. Pustakhod, M. K. Smit, and X. J. M. Leijtens, "Amplitude and phase error correction algorithm for 3×3 MMI based Mach-Zehnder interferometers," J. Lightwave Technol., Vol. 33, No. 11, 2233-2239, Jun. 2015.
doi:10.1109/JLT.2015.2409200

10. Hai, M. S., M. N. Sakib, and O. Liboiron-Ladouceur, "Monolithic 1 × 2 MMI-based 25-Gb/s SOI DPSK demodulator integrated with SiGe photodetector," IEEE Photon. Technol. Lett., Vol. 27, No. 6, 565-568, Mar. 2015.
doi:10.1109/LPT.2014.2377176

11. Takahashi, M., Y. Uchida, S. Yamasaki, J. Hasegawa, and T. Yagi, "Compact and low-Loss coherent mixer based on high Δ ZrO2-SiO2 PLC," J. Lightwave Technol., Vol. 32, No. 17, 3081-3088, Sept. 2014.
doi:10.1109/JLT.2014.2338914

12. Soldano, L. B. and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: Principles and applications," J. Lightwave Technol., Vol. 13, No. 4, 615-627, Apr. 1995.
doi:10.1109/50.372474

13. Sugiyama, K. and H. Tsuda, "Broadband 2×2 multimode interference coupler for T- and O-band communication by wavefront matching method," Advanced Photon., JM3A.32, 2015.

14. Wang, Q., J. Lu, and S. He, "Optimal design of a multimode interference coupler using a genetic algorithm," Opt. Commu., Vol. 209, 131-136, Aug. 2002.
doi:10.1016/S0030-4018(02)01664-4

15. West, B. R. and S. Honkanen, "MMI devices with weak guiding designed in three dimensions using a genetic algorithm," Opt. Express, Vol. 12, No. 12, 2716-2722, Jun. 2004.
doi:10.1364/OPEX.12.002716

16. Sakamaki, Y., T. Saida, T. Shibata, Y. Hida, T. Hashimoto, M. Tamura, and H. Takahashi, "Y-branch waveguides with stabilized splitting ratio designed by wavefront matching method," IEEE Photon. Technol. Lett., Vol. 18, No. 7, 817-819, Apr. 2006.
doi:10.1109/LPT.2006.871836

17. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.

18. Herrera, F., M. Lozano, and J. L. Verdegay, "Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis," Artificial Intelligence Review, Vol. 12, No. 4, 265-319, Aug. 1998.
doi:10.1023/A:1006504901164

19. Krishnakumar, K., "Micro-genetic algorithms for stationary and nonstationary function optimization," SPIE: Intelligent Control and Adaptive Systems, Vol. 1196, 289-296, Feb. 1989.

20. Coello, C. A. C. and G. T. Pulido, "A micro-genetic algorithm for multiobjective optimization, evolutionary multi-criterion opitimization," Lect. Notes Comput. Sci., Vol. 1993, 126-140, 2001.
doi:10.1007/3-540-44719-9_9

21. Chakravarty, S., R. Mittra, and N. B. Williams, "Application of a micro-genetic algorithms (MGA) to the design of broad-band microwave absorbers using multiple frequency selective surface screen buried in dielectrics," IEEE Trans. Antennas Propag., Vol. 50, No. 3, 284-296, Mar. 2002.
doi:10.1109/8.999618

22. Fallahi, A., M. Mishrikey, C. Hafner, and R. Vahldieck, "Efficient procedures for the optimization of frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 56, No. 5, 1340-1349, May 2008.
doi:10.1109/TAP.2008.922678

23. Mori, T., R. Murakami, Y. Sato, F. Campelo, and H. Igarashi, "Shape optimization of wideband antennas for microwave energy harvesters using FDTD," IEEE Trans. Magn., Vol. 51, No. 3, 8000804, Mar. 2015.
doi:10.1109/TMAG.2014.2359677

24. Tsuji, Y. and M. Koshiba, "A finite element beam propagation method for strongly guiding and longitudinally varying optical waveguides," J. Lightwave Technol., Vol. 14, No. 2, 217-222, Feb. 1996.
doi:10.1109/50.482266

25. Koshiba, M. and Y. Tsuji, "A wide-angle finite-element beam propagation method," IEEE Photon. Technol. Lett., Vol. 8, No. 9, 1208-1210, Sept. 1996.
doi:10.1109/68.531838

26. Yasui, T., M. Koshiba, and Y. Tsuji, "A wide-angle finite element beam propagation method with perfectly matched layers for nonlinear optical waveguides," J. Lightwave Technol., Vol. 17, No. 10, 1909-1915, Oct. 1999.
doi:10.1109/50.793775

27. Nolting, H.-P. and R. März, "Results of benchmark tests for different numerical BPM algorithms," J. Lightwave Technol., Vol. 13, No. 2, 216-224, Feb. 1995.
doi:10.1109/50.365209

28. Okamoto, K., Fundamentals of Optical Waveguides, 2nd Ed., Academic Press, 2005.