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Structural Optimization of Silica-Based 2 × 2 Multimode Interference

Coupler Using a Real-Coded Micro-Genetic Algorithm
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Abstract—We propose a structural optimization method based on a real-coded micro-genetic algorithm
to realize a weakly guided 2 × 2 multimode interference (MMI) coupler with low imbalance and excess
loss over a wavelength range from 1520 to 1580 nm. The proposed method was applied to silica-based
2× 2 MMI couplers with a relative refractive index difference of 5.5%. The optimized result showed an
imbalance of less than 8.4×10−3 dB, an excess loss of less than 0.14 dB, and a normalized output power
of more than 48% over the operation wavelength range. The proposed method achieved an optimized
2 × 2 MMI coupler after 250 times of propagation analysis per wavelength, which is less than 6.7% of
those by the conventional methods for 4×4 and 1×4 MMI couplers, and was proven to be more effective
than the conventional methods. To consider realistic optical devices, 2 × 2 MMI couplers whose values
of structural parameters are close to the optimized values within the accuracy of typical fabrication
tolerance are also analyzed. The results are comparable to those of the optimized 2 × 2 MMI coupler.

1. INTRODUCTION

A multimode interference (MMI) coupler is an important and widely used component in photonic
integrated circuits (PICs), such as 3-dB couplers [1–3], optical hybrids [4–6], multi/demultiplexers for
mode-division multiplexing (MDM) transmission [7, 8], Mach-Zehnder interferometers for wavelength
meters [9], and differential phase shift keying (DPSK) demodulators [10]. An MMI coupler with M
input and N output access waveguides is referred to as an M ×N MMI coupler. The most widely used
application of a MMI coupler is possibly the 2 × 2 MMI coupler as a 3-dB coupler [1–5].

To fabricate PICs, the most promising and widely used materials are Si nano wire [1, 7, 8, 10],
InP [2, 3, 6, 9], and silica [4, 5, 11]. All these materials have drawbacks and advantages. The InP
and Si nano wire waveguides are advantageous for high-density integration and integration of active
elements such as photo-detectors, but have drawbacks such as high propagation loss and high coupling
loss to single-mode fibers (SMFs). On the other hand, the silica waveguides have advantages such as
extremely low propagation loss, low coupling loss to SMFs, and low polarization dependence, but the
silica waveguides are larger than those of the InP or Si nano wires. To overcome this disadvantage,
silica waveguides with high refractive index difference between core and clad have been used to realize
compact silica waveguides, as reported recently [11].

In general, the structural parameters of an MMI coupler, such as its length and the positions of the
input and output access waveguides, are determined by the self-imaging theory [12], which relies on a
parabolic distribution of effective indices of eigenmodes in the MMI section. However, an MMI coupler
designed by the self-imaging theory cannot give good performance, such as imbalanced output power
and higher excess loss, for an MMI based on a weakly guided waveguide, such as a silica waveguide.
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This is because the distribution of effective indices of eigenmodes in the weakly guided MMI section is
sub parabolic owing to the larger effective width of higher-order eigenmodes.

To realize a higher-performance weakly-guided MMI coupler, structural optimizations of MMI
couplers by the wavefront matching (WFM) method [13] and genetic algorithms (GAs) [14, 15] have
been considered. Sugiyama and Tsuda have carried out structural optimization of silica-based 2 × 2
MMI couplers for the T- and O-bands by the WFM method [13]. Wang et al. [14] and West and
Honkanen [15] have applied GAs to structural optimizations of weakly guided 4 × 4 and 1 × 4 MMI
couplers, respectively, that were operated in a single wavelength.

The WFM method synthesizes the optimized refractive index distribution of the waveguides from
the desired optical characteristics [16]. However, very fine refractive index patterns appear in the
synthesized optimum waveguides. As a result, the high fabrication tolerance of MMI couplers owing to
their simple structure becomes diminished.

The GA optimizes the structural parameters of the MMI couplers, such as the length of the MMI
and positions of the access waveguides [14, 15]. Thus, the simple structure of an MMI coupler can be kept
through the optimization. In the simplest form of a GA (SGA) [17], an MMI coupler is represented
as a binary coded chromosome, and the typical size of the population in a generation is from 30 to
200. However, the binary chromosome representation meets difficulties to optimize the parameters
represented by the continuous numbers, such as the structural parameters for an MMI coupler. In
addition, since wave propagation analysis is required for the structural optimization of MMI couplers,
large population sizes increase the computational time. To overcome such drawbacks of the SGA, a
real-coded GA [18], in which the chromosome is represented by a vector of floating point numbers, and
a micro-GA (µGA) [19–23], in which the population size is typically five, have been proposed.

In this paper, we propose a method for structural optimization of 2 × 2 MMI couplers based on
a real-coded µGA. The two-dimensional beam-propagation method (BPM) based on the finite-element
scheme (FE-BPM) [24–26], whose accuracy for optical waveguide analysis has been ensured [25, 27], is
employed for the propagation analysis of the MMI couplers. The proposed method is applied to the
optimization of silica-based 2 × 2 MMI couplers to realize an MMI with low imbalance and low excess
loss over a range of operation wavelength from 1520 to 1580 nm. An MMI coupler optimized by the
proposed method has an imbalance of less than 8.4 × 10−3 dB, an excess loss of less than 0.14 dB, and
a normalized output power of more than 48% over the range of operation wavelength, which are better
than the values of an MMI coupler optimized by the WFM method [13]. In addition, the proposed
method has an advantage in computational efficiency, because it required less than 6.7% of number of
propagation analysis for the optimization, compared to the conventional GA [14, 15].

2. REAL-CODED MICRO-GENETIC ALGORITHM

2.1. Micro-Genetic Algorithm

A µGA is a genetic algorithm with a small population, which is typically five, and reinitialization.
It starts with a randomly generated population. Production of individuals in the next generation
by genetic operation is carried out until nominal convergence is reached. Then, a new population is
generated by transferring the best individual in the converged population to the new one, followed by
randomly generating the remaining individuals [19, 20].

The procedures of the algorithm are the following:

(i) Randomly generate the starting population of size Np = 5.
(ii) Perform BPM [24–26] calculations for each individual in the population.
(iii) Evaluate the fitness of each individual in the population.
(iv) The individual with the highest fitness is carried to the next generation as the elite (elitist strategy).
(v) If nominal convergence is reached, randomly generate the remaining Np − 1 individuals in the next

generation; otherwise produce the remaining Np − 1 individuals by selection and crossover.
(vi) Repeat (ii)–(v) until the termination condition is satisfied.
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2.2. Real-Coded Genetic Algorithm

In the real-coded GA, a chromosome is represented as a vector of floating point numbers [18]. The
size of the chromosome is the same as the length of the vector. Each gene, which is represented as an
element of the vector, denotes a variable to be optimized.

In this paper, we denote the chromosome of the ith individual in the gth generation as

x(g,i) = (x(g,i)
1 , x

(g,i)
2 , . . . , x

(g,i)
N ), (1)

where N is the size of the chromosome.
To generate the starting population or the remaining Np−1 individuals after nominal convergence,

the value of x
(g,i)
j is randomly chosen from an interval [xj,min, xj,max], which is the search range of the

jth gene.
To produce the Np−1 individuals in the next generation from individuals in the current generation,

a binary tournament selection and the BLX-α strategy [18] are applied to the selection and crossover,
respectively.

The selection mechanism produces an intermediate population of size Np. The elite is copied into
the intermediate population. The remaining Np − 1 individuals in the intermediate population are
selected by binary tournament selection. The fitness values of two randomly selected individuals in
the current generation are compared, and then the individual with the higher fitness is selected for the
intermediate population.

The crossover operation produces an individual in the next generation from two randomly selected
individuals in the intermediate population. In the BLX-α crossover strategy, the jth gene in the ith
individual in the next generation is produced as

x
(g+1,i)
j =

⎧⎪⎨
⎪⎩

xj,min for x′
j < xj,min

xj,max for x′
j > xj,max

x′
j otherwise,

(2)

where x′
j is a randomly chosen number of an interval [xj1 − α · Ij, xj2 + α · Ij] and α is a real number

to determine the interval. Here, xj1 = min(xg,i1
j , xg,i2

j ), xj2 = max(xg,i1
j , xg,i2

j ), Ij = xj2 − xj1, where i1
and i2 denote the indices of the randomly selected individuals.

3. MODEL OF 2 × 2 MMI COUPLER

Figure 1 shows a two-dimensional model of the 2 × 2 MMI coupler, which has a width and length of
WMMI and LMMI , respectively. Two pairs of input and output access waveguides of width wac are
symmetrically placed about the center of the MMI section. The distance between a center of the access
waveguide and the center of the MMI is denoted as yac. The refractive indices of the core and cladding
are ncore and nclad, respectively.

In this paper, yac and LMMI are given as follows:

LMMI =
3Lπ

2
+ ΔLMMI , (3)

yac =
WMMI

4
+ Δyac, (4)

where ΔLMMI and Δyac are, respectively, deviations of the length of the MMI and the position of the
center of the access waveguides. Here, Lπ is the beat length in the MMI given by

Lπ =
π

β0 − β1
, (5)

where β0 and β1 respectively denote the propagation constants of the fundamental and first-order modes
of the MMI. We note that LMMI with ΔLMMI = 0 is the length of a 2 × 2 MMI coupler given by the
self-imaging theory [12].
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Figure 1. Schematic structure of the 2 × 2 MMI coupler.

Table 1. Genes and their search ranges for the 2 × 2 MMI coupler.

j x
(g,i)
j xj,min xj,max

1 WMMI 8µm 18µm
2 ΔLMMI −10µm 10µm
3 Δyac −1µm 1µm

In the proposed structural-optimization method for 2 × 2 MMI couplers, the optimum values of
WMMI , ΔLMMI , and Δyac are searched by the real-coded µGA described above. The genes in a
chromosome, which represents a 2 × 2 MMI coupler, and their search ranges are shown in Table 1.

The fitness of each individual is evaluated as follows:

F = exp

[
− 1

Nλ

∑
λ∈Λ

(WibIb(λ) + WxlXl(λ))

]
, (6)

where Λ is a set of wavelengths for BPM analysis, Nλ denotes the number of elements that belong to Λ,
Ib(λ) and Xl(λ) are the imbalance and excess loss at a wavelength λ ∈ Λ, respectively, and Wib and Wxl

are the weighting coefficients that determine the relative importance of Ib(λ) and Xl(λ), respectively.
Here, Ib(λ) and Xl(λ) are defined as follows:

Ib(λ) = −10 log
min{P1(λ), P2(λ)}
max{P1(λ), P2(λ)} [dB], (7)

Xl(λ) = −10 log
P1(λ) + P2(λ)

Pin(λ)
[dB], (8)

where Pi(λ) (i = 1, 2) denotes the output optical power at the output i for the incident wave of power
Pin(λ) into the input 1. We note that Pi(λ) (i = 1, 2) are evaluated by the overlap integral at the end
of the MMI section, and that the electric field in the BPM calculation is normalized so that Pin(λ) is
unity.

4. NUMERICAL RESULTS

We consider silica-based 2×2 MMI couplers. The range of operation wavelength is from 1520 to 1580 nm.
The relative refractive index difference is Δ = 5.5% [11]. The wavelength-dependent refractive index of
the cladding is given by the following Sellmeier equation [28],

nclad(λ) =

√√√√1 +
3∑

i=1

aiλ2

(λ2 − bi)
, (9)
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where λ is the wavelength in µm, a1 = 0.6965325, a2 = 0.4083099, a3 = 0.8968766, b1 = 4.368309×10−3 ,
b2 = 1.394999 × 10−2, and b3 = 9.793399 × 101. The widths of the input and output waveguides are
taken as wac = 3.0µm. The thickness of the core is assumed to be 3.0 µm. Two-dimensional models
obtained by the effective index method are analyzed by the BPM. The incident wave is assumed to be
the TE-polarized fundamental mode of the input access waveguide 1. The termination condition of the
optimization process is given as g = Ni, where Ni denotes the number of iterations. In the following
results, Ni is taken as 50, α for the BLX-α is taken as 0.5, and the propagation constants β0 and β1 in
Eq. (5) are evaluated at the wavelength of 1550 nm to determine the length of the MMI couplers.

First, to take into account the wavelength dependence of the 2×2 MMI coupler in the optimization
process, we consider the three sets of wavelength Λ as Λ1 = {1550 nm}, Λ3 = {λi|λi = 1520+30inm, i =
0, 1, 2}, and Λ7 = {λi|λi = 1520 + 10inm, i = 0, 1, 2, . . . , 6}. For each Λ, the optimization process was
carried out 100 times. Fig. 2 shows the wavelength dependence of the normalized output power of
the optimized structure with the largest fitness after 100 optimization processes for each Λ. Here, the
weighting coefficients are taken as Wib = Wxl = 1. Fig. 2(a) shows the results with Λ = Λ1 and Λ3.
For Λ = Λ1, although, very large normalized output power of 49.6% is achieved at the wavelength of
1550 nm, which is used for the optimization, the wavelength dependence of the output power is also very
large. On the other hand, the result with Λ = Λ3 shows the output power of more than 48.5% over the
range of operation wavelength with small wavelength dependence. We can see that optimization with
more than one wavelength is effective to design a wideband 2 × 2 MMI coupler. Fig. 2(b) shows the
results with Λ = Λ3 and Λ7. They show similar output power and wavelength dependence. The obtained
structural parameters and the fitness of the optimized 2× 2 MMI couplers are shown in Table 2. Since
a larger number of wavelengths for the BPM analysis requires longer computational time, we choose Λ3

as Λ in the following optimization.
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Figure 2. Normalized output power of the optimized 2 × 2 MMI couplers, which have the highest
fitness after 100 optimization processes with (a) Λ = Λ1 and Λ3, and (b) Λ = Λ3 and Λ7, as functions
of wavelength. Here, the incident power at the wavelength λ, Pin(λ), is normalized to unity.

Table 2. Structural parameters and fitness for the optimized 2×2 MMI couplers with the optimization
with Λ = Λ1, Λ3, and Λ7.

Λ WMMI [µm] LMMI [µm] yac [µm] fitness
Λ1 9.466 218 1.520 0.967
Λ3 8.823 192 2.895 0.892
Λ7 8.792 191 2.865 0.902

Figure 3 shows the maximum fitness, maximum imbalance, and maximum excess loss as functions of
generation for the 2×2 MMI coupler whose normalized output power is shown in Fig. 2 for Λ = Λ3. We
can see that the performance of the 2× 2 MMI coupler is improved by the iteration of the optimization
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Figure 3. Fitness, maximum imbalance, and maximum excess loss of the optimized 2×2 MMI coupler,
which has the highest fitness after 100 optimization processes with Λ = Λ3, as functions of generation
in optimization process.
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Figure 4. Histograms of maximum (a) imbalance and (b) excess loss for the optimized 2 × 2 MMI
couplers for 100 optimization processes with Λ3.

process. For the optimized structure, the imbalance and excess loss are smaller than 1.0× 10−2 dB and
0.12 dB, respectively, over the range of the wavelength of operation. Fig. 4 shows the histograms of
the maximum imbalance and excess loss for the 100 optimized structures with Λ = Λ3. The mean and
standard deviation of the imbalance are μib = 0.060 dB and σib = 0.033 dB, respectively, and those for
the excess loss are μxl = 0.208 dB and σxl = 0.069 dB, respectively. The three standard deviations above
the mean for the imbalance and excess loss are, respectively, 0.16 dB and 0.41 dB, which are comparable
to the maximum imbalance and excess loss of a weakly guided 2× 2 MMI coupler whose structure was
optimized by the WFM method [13]. We can say that the proposed optimization method almost always
leads to weakly guided 2 × 2 MMI couplers, which have imbalance values and excess loss values that
are as good as or better than those for the WFM method.

The optimum design of MMI couplers requires a large number of optical wave propagation analyses.
In the conventional optimization methods based on the conventional GA, propagation analyses were
carried out 12000 [Np = 80, Ni = 150, Np × Ni = 12000] times and 3750 [Np = 15, Ni = 250,
Np × Ni = 3750] times per wavelength for the optimizations of 4 × 4 [14] and 1 × 4 [15] MMI couplers,
respectively. In comparison to the conventional method, propagation analyses were carried out 250
[Np = 5, Ni = 50, Np ×Ni = 250] times, which is less than 6.7% of those by the conventional methods,
per wavelength in the proposed method. The effectiveness of the proposed method is demonstrated
through the above examples.

Next, we provide the weighting value Wxl as 1 − Wib for 0 ≤ Wib ≤ 1.0 to see the effect of the
weighting values. The maximum imbalance and excess loss as functions of Wib are shown in Fig. 5.
It is evident that the maximum imbalance and excess loss are nearly independent of the value of Wib
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value Wxl is given as 1 − Wib.
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optimized 2 × 2 MMI couplers as a function of
wavelength for Wib = 0, 0.9, and 1.0. We
note that the output power at output 1 and 2
are identical for Wib = 0.9 and 1.0 owing to
small imbalance. Here, the incident power at the
wavelength of λ, Pin(λ), is normalized be unity.

between 0.3 and 0.9. On the other hand, the maximum imbalance and excess loss are very large for
Wib = 0 [Wxl = 1] and Wib = 1 [Wxl = 0], respectively. The structural parameters and fitness of the
optimized 2 × 2 MMI couplers are shown in Table 3. Similar structural parameters were achieved for
Wib between 0.3 and 0.9. We can say that both the imbalance and excess loss should be considered in
the fitness to realize a 2 × 2 MMI coupler with smaller imbalance and excess loss.

Table 3. Structural parameters and fitness for the optimized 2× 2 MMI couplers for the values of Wib

between 0 and 1. Here, Wxl = 1 − Wib and Λ = Λ3.

Wib WMMI [µm] LMMI [µm] yac [µm] fitness
0.0 8.217 173 1.649 0.977
0.1 8.149 167 2.554 0.932
0.2 9.878 234 3.392 0.925
0.3 8.834 192 2.896 0.926
0.4 8.830 192 2.901 0.934
0.5 8.854 192 2.865 0.945
0.6 8.735 190 2.854 0.953
0.7 8.866 192 2.848 0.965
0.8 8.798 191 2.855 0.975
0.9 8.836 191 2.831 0.985
1.0 14.970 503 4.413 0.993

Figure 6 shows the normalized output power of the optimized 2× 2 MMI couplers as a function of
wavelength for Wib = 0, 0.9, and 1.0. We note that Wib = 0.9 gave the largest fitness of the optimized
2× 2 MMI coupler for 0.3 ≤ Wib ≤ 0.9, as shown in Table 3, where the maximum imbalance and excess
loss are less than 8.4× 10−3 dB and 0.14 dB, respectively. For Wib = 0.9, a normalized output power of
more than 48% over the range of operation wavelength was achieved. On the other hand, the normalized
output powers of the two output waveguides are not balanced and strongly depend on wavelength for
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Figure 7. Field distributions at the end of the
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Here, the field is normalized by the amplitude of
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Figure 9. Field distributions at the end of the optimized 2 × 2 MMI coupler with Wib = 1.0. Here,
the field is normalized by the amplitude of the incident field.

Wib = 0, and they are balanced but the values decrease for longer and shorter wavelengths for Wib = 1.0.
Distributions of the x-components of the electric field at the end of the optimized 2 × 2 MMI couplers
are shown in Figs. 7, 8, and 9 for Wib = 0.9, 0, and 1.0 respectively. As shown in Fig. 7, the input wave
is almost equally split without wavelength dependence of the field distribution. On the other hand,
Fig. 8 shows non-uniform splitting of the input wave. In Fig. 9, although the input waves are equally
split, the peak intensities strongly depend on wavelength.

Since the optimized structural parameters of MMI couplers are represented as floating point values
in the chromosome, these values have more precise accuracy than typical fabrication tolerances, which
are of the order of 0.1µm. We evaluate MMI couplers whose values of WMMI and yac are around
the optimized values for Wib = 0.9 with accuracy of typical fabrication tolerance. Table 4 shows the
maximum excess loss and imbalance over the operation wavelength range for the MMI couplers with
values of WMMI and yac with the accuracy of fabrication tolerance, where LMMI is taken as 191 µm.
The maximum excess loss of the MMI coupler with 8.8 µm of WMMI and 2.8µm of yac is identical to
that for the optimized structure. Although the maximum imbalance of this MMI coupler is slightly
larger than that of the optimized structure, the value is still very small. A normalized output power
of more than 48% is achieved. The maximum excess loss and imbalance shown in Table 4 are debased
by considering the fabrication tolerance for WMMI and yac, and are rather sensitive to the change in
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Table 4. Maximum excess loss and imbalance over the operation wavelength range for 2 × 2 MMI
couplers whose values of WMMI and yac are around the optimized values with the accuracy of typical
fabrication tolerance. Here, LMMI is taken as 191µm.

WMMI [µm] yac [µm] max. excess loss [dB] max. imbalance [dB]
8.8 2.8 0.18 1.1 × 10−1

8.8 2.9 0.14 2.9 × 10−2

8.9 2.8 0.33 2.6 × 10−1

8.9 2.9 0.20 6.7 × 10−1

WMMI . The authors think that the difference in propagation distance in the MMI section affects the
quality of self-imaging characteristics.

5. CONCLUSION

In this paper, we propose a structural optimization method based on a real-coded µGA for weakly
guided 2 × 2 MMI couplers to realize an MMI coupler with low imbalance and excess loss over the
wavelength ranging from 1520 to 1580 nm. The proposed method was applied to silica-based 2×2 MMI
couplers with Δ = 5.5%. The optimized 2 × 2 MMI coupler, which has the MMI section width and
length of 8.836µm and 191µm, respectively, and for witch the distance between the centers of the MMI
and an access waveguide was 2.831µm, showed an imbalance of less than 8.4 × 10−3 dB, an excess loss
of less than 0.14 dB, and a normalized output power of more than 48% over the wavelength range. The
proposed method achieved an optimized 2× 2 MMI coupler after 250 times of propagation analyses per
wavelength, which is less than 6.7% of those by the conventional methods for 4 × 4 and 1 × 4 MMI
couplers, and was proven to be more effective than the conventional methods. The 2× 2 MMI couplers,
which have structural parameter values close to the optimized values, within an accuracy of typical
fabrication tolerance, were also analyzed by the BPM. The result was comparable with that for the
optimized 2 × 2 MMI coupler.

REFERENCES

1. Chen, S., X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division
(de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach-Zehnder
interferometer,” J. Lightwave Technol., Vol. 33, No. 11, 2279–2285, June 2015.

2. Bitincka, E., G. Gilardi, and M. K. Smit, “On-wafer optical loss measurements using ring resonators
with integrated sources and detectors,” IEEE Photon. J., Vol. 6, No. 5, 6601212, Oct. 2014.

3. Ma, Y., S. Park, L. Wang, and S. T. Ho, “Ultracompact multimode interference 3-dB coupler with
strong lateral confinement by deep dry etching,” IEEE. Photon. Technol. Lett., Vol. 12, No. 5,
492–494, May 2000.

4. Sakamaki, Y., Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of
phase-difference deviation in 90◦ optical hybrid over wide wavelength range,” Ieice Electronics
Express, Vol. 7, No. 3, 216–221, Feb. 2010.

5. Hashizume, Y., T. Goh, Y. Inoue, K. Hamamoto, and M. Itoh, “Polarization beam splitter with
different core widths and its application to dual-polarization optical hybrid,” J. Lightwave Technol.,
Vol. 33, No. 2, 408–414, Jan. 2015.
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