Vol. 67
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-03-16
Validation of a Convolution Integral for Conductivity Imaging
By
Progress In Electromagnetics Research Letters, Vol. 67, 1-6, 2017
Abstract
Magnetic induction tomography has been under consideration for imaging electrical conductivity distributions within the human body. Multi-coil systems are most commonly employed for this task, requiring a numerical solution of Maxwell's equations at each position of the coil array. An alternative uses a single coil placed near the conductive target while measuring coil self-impedance changes (``coil loss'') at a number of unique locations. Recently, a closed-form solution of Maxwell's equations, in the form of a 3D convolution integral, was found for a single coil consisting of concentric circular loops that relates impedance change to an arbitrary conductivity. Its development required spatially uniform permittivity and permeability, yet showed quantitative agreement with experiment. Here, we provide a much more critical test of the convolution integral in experiments that allow large permittivity changes over coil dimensions. Loss is measured while the coil is placed at known positions relative to plastic columns of variable diameter which are filled with salt solutions of varying conductivity. In all cases, coil loss varies linearly with conductivity and with zero intercept. Quantitative agreement is observed only when column diameter is greater than or equal to coil diameter. Because of linearity, the convolution integral is useful for image reconstruction, though contrast could be either reduced or enhanced in those circumstances when relative permittivity change exceeds ~70.
Citation
Joe R. Feldkamp, and Stephen Quirk, "Validation of a Convolution Integral for Conductivity Imaging," Progress In Electromagnetics Research Letters, Vol. 67, 1-6, 2017.
doi:10.2528/PIERL17011401
References

1. Borcea, L., "Electrical impedance tomography," Inverse Problems, Vol. 18, R99-R136, 2002.
doi:10.1088/0266-5611/18/6/201

2. Sikora, J., Boundary Element Method for Impedance and Optical Tomography, OficynaWydawnicza Politechniki Warszawskiej, ISBN: 978-83-7207-728-8, 2007.

3. Sikora, J. and S. W`ojtowicz, Industrial and Biological Tomography: Theoretical Basis and Applications, Wydawnictwo Ksi¸a˙zkowe Instytutu Elektrotechniki, ISBN: 978-83-61956-04-4, 2010.

4. Wei, H. Y. and M. Soleimani, "Electromagnetic tomography for medical and industrial applications: Challenges and opportunities," Proc. IEEE, Vol. 101, 559-564, 2013.
doi:10.1109/JPROC.2012.2237072

5. Harpen, M. D., "Influence of skin depth on NMR coil impedance," Phys. Med. Biol., Vol. 33, No. 3, 329-337, 1988.
doi:10.1088/0031-9155/33/3/002

6. Zaman, A. J. M., S. A. Long, and C. G. Gardner, "The impedance of a single-turn coil near a conducting half space," J. Nondestructive Eval., Vol. 1, No. 3, 183-189, 1980.
doi:10.1007/BF00567090

7. Harpen, M. D., "Influence of skin depth on NMR coil impedance. Part II," Phys. Med. Biol., Vol. 33, No. 5, 597-605, 1988.
doi:10.1088/0031-9155/33/5/007

8. Hoult, D. I. and P. C. Lauterbur, "The sensitivity of the zeugmatographic experiment involving human samples," J. Magnetic Resonance, Vol. 34, No. 2, 425-433, 1979.

9. Feldkamp, J. R., "Single-coil magnetic induction tomographic three-dimensional imaging," J. Medical Imaging, Vol. 2, No. 1, 013502, 2015.
doi:10.1117/1.JMI.2.1.013502

10. Sankowski, D. and J. Sikora, Electrical Capacitance Tomography: Theoretical Basis and Applications, Wydawnictwo Ksi¸a˙zkowe Instytutu Elektrotechniki, ISBN: 978-83-61956-00-6, 2010.

11. Stawicki, K. and S. Gratkowski, "Optimization of signal coils in the magnetic induction tomography system," Przeglad Elektrotechniczny, Vol. 86, No. 5, 74-77, 2010.

12. Gradshteyn, I. S. and Ryzhik, Table of Integrals, Series and Products, Corrected and Enlarged Edition, A. Jeffrey, Academic Press, New York, NY, 1980.

13. Lapidus, L. and G. F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering, Wiley-Interscience, J. Wiley & Sons, NY, 1982.

14. Feldkamp, J. R. and S. Quirk, "Effects of tissue heterogeneity on single-coil, scanning MIT imaging," Proc. SPIE 9783, Medical Imaging: Physics of Medical Imaging, 978359, 2016.