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Validation of a Convolution Integral for Conductivity Imaging

Joe R. Feldkamp1, * and Stephen Quirk2

Abstract—Magnetic induction tomography has been under consideration for imaging electrical
conductivity distributions within the human body. Multi-coil systems are most commonly employed
for this task, requiring a numerical solution of Maxwell’s equations at each position of the coil array.
An alternative uses a single coil placed near the conductive target while measuring coil self-impedance
changes at a number of unique locations. Recently, a closed-form solution of Maxwell’s equations, in the
form of a 3D convolution integral, was found for a single coil consisting of concentric circular loops that
relates impedance change (loss) to an arbitrary conductivity. Its development required spatially uniform
permittivity and permeability, yet showed quantitative agreement with experiment. Here, we provide a
much more rigorous test of the convolution integral in experiments that allow large permittivity changes
across coil dimensions. Loss is measured while the coil is placed at known positions relative to plastic
columns of variable diameter which are filled with salt solutions of varying conductivity. In all cases, coil
loss varies linearly with conductivity and with zero intercept. Quantitative agreement is observed only
when column diameter is greater than or equal to coil diameter. Because of linearity, the convolution
integral is useful for image reconstruction, though contrast could be either reduced or enhanced in those
circumstances when relative permittivity change exceeds ∼ 70.

1. INTRODUCTION

Efforts to image electrical conductivity within the human body have primarily relied upon two differing
imaging modalities — either electrical impedance tomography (EIT) [1, 2] or magnetic induction
tomography (MIT) [3, 4]. EIT requires electrode contact with the object under test in order to inject
electrical currents, while additional attached electrodes serve as sensors to help determine current
distribution throughout a portion of the body. MIT instead relies upon the ability of an induction
coil to induce eddy currents via an EM excitation field, making contact unnecessary. These eddy
currents create their own secondary field which can be detected in a second independent coil or in the
primary excitation coil itself [5, 6]. As stated by Zaman et al. [6], the former requires an analysis of
transfer impedance for a primary and secondary coil placed near a test object while the latter involves a
calculation of self-impedance of the primary coil when placed in the immediate vicinity of the target. A
multi-coil system has the distinct disadvantage of requiring a numerical solution of Maxwell’s equations
for each position of the coil array relative to target, which is needed for the “forward problem” prior to
image reconstruction.

A single mobile coil is not only physically simpler to manage, but progress has been made at finding
closed form solutions [5–8] that could alleviate the need for a much more laborious effort toward solving
the forward problem. These analytical approaches, though formidable in form, offer an ability to see
a clear connection between measured impedance change, δZ, and basic problem parameters — such
as conductivity and target geometry. Nevertheless, these closed-form expressions all have the difficulty
that conductivity is treated as spatially invariant within the target geometries studied, making them
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unsuitable candidates for conductivity imaging. More recently [9], a closed-form expression relating
impedance change, which we will call inductive loss since impedance change shows up as a dissipative
resistive load in series with the coil, was developed that imposes no requirement on the electrical
conductivity distribution. Though this makes it an attractive candidate for conductivity imaging, the
expression was derived at the expense of treating permittivity and permeability as spatially uniform.
In this short communication, we examine the consequences of the uniform permittivity approximation.
We provide experimental results that justify the use of the convolution integral, which has no adjustable
parameters requiring calibration, for conductivity imaging. If permittivity imaging was desired, other
modalities such as electrical capacitance tomography [10] have been proposed.

2. CONVOLUTION INTEGRAL FOR IMPEDANCE CHANGE

The recently developed closed-form analytical expression [9] for inductive loss (or impedance change)
may be written as a 3D convolution integral that convolves conductivity σ(�r) with the kernel G(�rc).
Given the rotation matrix R̃, vector �rc = R̃T (�r − �c) locates the field point in the coordinate system of
the coil, and vector �c locates the coil center relative to the lab frame origin:

δZ(�c) =
∫

σ (�r)G
(
R̃T (�r − �c)

)
dxdydz (1)

The coil coordinate system consists of an orthogonal set of Cartesian axes located at the coil center with
Z axis normal to the coil plane, while the kernel is given in terms of a summation over the concentric
circular loops that comprise the coil:

G (�rc) =
μ2ω2

4ρπ2

∑
j,k

√
ρjρkQ1/2 (ηj)Q1/2 (ηk) (2)

Arguments for the circularly symmetric toroid (or ring) function Q1/2 lie in the interval 1 < η < ∞ and
are related to field position by:

ηj =
ρ2 + ρ2

j + z2
c

2ρρj
; ηk =

ρ2 + ρ2
k + z2

c

2ρρk
(3)

Using any suitable fixed laboratory coordinate system, other symbols are defined by:

σ(�r): Electrical conductivity (real part) at field position (lab): �r = x, y, z

ρk: Cylindrical radial distance from coil axis to wire loop ‘k’
ρ: Cylindrical radial distance from coil axis to field point
zc: Perpendicular distance from coil plane to field point
μ: Magnetic permeability — considered uniform
ω: Angular frequency.

The function G(�rc) is rapidly evaluated through use of a hypergeometric series for the toroidal
functions [12]. If the coil is not rotated relative to the lab frame, then the rotation matrix is just the
identity matrix. Inductive loss is computed at 12.5 MHz by using a finite element discretization of
the convolution integral. This is accomplished by expanding the electrical conductivity into the usual
superposition of shape functions. Here, we use a linear basis set on deformed prismatic elements [[13],
Fig. 3], with 9-point integration over each element.

3. INDUCTIVE LOSS MEASUREMENT

Coil geometry and construction is identical to that described previously [9] — two planes of concentric
circular loops, spaced 0.5 mm, prepared on a double-layer printed circuit board (PCB). Loop traces are
0.5 mm wide, built from 2 oz. copper, having radii of 4, 8, 12, 16 and 20 mm, all wired in series, giving
ten loops total. There is a 1 mm buildup of PCB material on the side of the coil facing outward, so
that there is at least a 1mm separation between coil and target. Coil inductance, L, is calculated from
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Equations (5) and (6) of earlier work [9] — the latter repeated here in more general form in terms of
loop self-inductance, Lsj, and mutual inductances between loops, Mjk:

L = N2
layers

⎛
⎝ 5∑

j=1

Lsj +
5∑

j,k=1

Mjk

⎞
⎠ ; j �= k (4)

In our case, there are two layers, so that a factor of four multiplies each sum. Equation (4) is a
reasonable approximation for our coil’s inductance provided that the distance between layers is very
small compared with loop radii. Inductance for our coil was calculated to be 2.155 µH, which is used in
all computations here and agrees with measurement to within 1% [9].

Coil loss, known to be weak and difficult to measure [11], is computed from a change in the real
part of admittance, δYre, relative to the free space value, which subtracts the effect of any loss intrinsic
to the coil. Given inductance L and frequency ω, coil loss is computed from the formula:

δZ = ω2L2δYre (5)
Thus, two admittance measurements are needed — one in free space that avoids interaction with
nearby conductive objects, and then subsequent measurements in the immediate vicinity of a conductive
specimen. When making 20 to 30 free space measurements at 12.5 MHz, admittance standard deviation
is typically ∼ 0.11µS. Additional details are found in [9].

4. COLUMN EXPERIMENTS

In our previous paper, measured coil loss was shown to give quantitative agreement with theory when
the coil was placed at varying distances above and parallel to a large tank of aqueous potassium chloride
— the tank had a diameter ∼ 6× larger than the coil diameter. The reason for using such a large tank is
associated with the known “reach” of the coil in the coil plane [14]. The tank was sufficiently large that
an appreciable EM field would not likely have intercepted the salt solution at its lateral boundaries, so
that the impact of a sudden change in relative permittivity would be minor.

But here, we are concerned with smaller systems that would permit appreciable EM field
interception of target boundaries, and considering these will help us better understand the uniform
permittivity approximation. This is accomplished by placing the coil in contact with the wall of a small-
diameter column that contains a salt solution, such that the plane of the coil is parallel to the column axis
and the coil axis intersects the column axis — see Figure 3 for sketch. We tested five different column
internal diameters — 1.75 cm (wall thickness = 3.0 mm), 2.3 cm (wall thickness = 3.6 mm), 3.98 cm
(wall thickness = 4.2 mm), 5.1 cm (wall thickness = 4.6 mm) and 7.7 cm (wall thickness = 6.0 mm).
Column material is PVC (polyvinyl chloride) in each case. Given that the coil’s outermost loop has a
4 cm diameter, interception of the solution boundary in a manner that places a significant component
of the electric field perpendicular to the boundary is ensured. A wide range of NaCl concentrations was
tested (0 to 1 M, in 0.1 M increments) so that any limitations to the linearity predicted by the model
could be tested in addition to boundary effects — note that the analytical solution was obtained under
the restriction that conductivity must be less than ∼ 10 S/m. Here we tested solutions ranging from
0S/m up to ∼ 9 S/m, which is above the conductivity expected in any biological medium. Conductivity
of each NaCl solution, at 25◦C, was determined using a Metler Toledo Seven2Go conductivity meter.
Coil loss was obtained by positioning the coil alongside the column in a hands-free manner, to eliminate
noise from hand capacitance.

In addition to measured loss, a direct comparison of experiment with theory is obtained by
computing the expected coil loss from a discretized version (finite element) of the analytical mapping
equation (Section 2). A finite element mesh matching the shape of the included liquid was built for
each column of liquid, typically consisting of ∼ 100, 000 elements. The coil has a build-up of 1.0 mm
of PCB material over the outermost set of coil loops, and with the 0.5 mm spacing between loop sets,
an average distance between coil and liquid column was set equal to wall thickness plus 1.25 mm. The
1.75 cm, 2.3 cm and 3.98 cm internal diameter columns were filled to give a solution height = 16.0 cm,
while the coil center was placed at a height of 8.0 cm along the outer wall. The 5.1 cm diameter column
was filled to a height of 14.0 cm, while the coil center was placed at a height of 7.0 cm. The 7.7 cm
diameter column was filled to a height of 12.0 cm, while the coil center was placed at a height of 6.0 cm.
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Figures 1(a) through 1(d) show the results of coil loss measurements for the coil placed flush against
the walls of each of the columns. Beginning with the smallest column diameter, where the discrepancy
between theory and experiment is greatest, the discrepancy gradually disappears while progressing to
the largest columns, where column diameter exceeds coil diameter. In all cases, however, the variation
of coil loss with solution electrical conductivity is always linear and through the origin, as predicted
by theory. Together with earlier results [9], we conclude that our mapping equation is a viable tool
for accomplishing tomographic reconstruction of an electrical conductivity distribution within human
tissues.

Our explanation for slope discrepancy is that relative permittivity suddenly drops from ∼ 80
for the solution phase down to ∼ 3.0 for PVC and then again to 1.0 for air just outside the PVC
wall — a violation of an assumption leading to our analytical mapping equation. Because of the
disagreement between theory and experiment in cases of very large relative permittivity discontinuities,
image reconstruction based upon the mapping formula could lead to a contrast error — i.e., a region
would indicate either a larger or smaller conductivity than expected, depending upon whether the
“interior region” has higher or lower relative permittivity, though also dependent on the magnitude of
the permittivity discontinuity.

Figures 2(a) and 2(b) show the effect of column diameter more directly by considering just a
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Figure 1. Coil loss for PVC columns filled with salt solutions; coil diameter = 4.0 cm; graphs show
99% confidence intervals; (a) i.d. = 2.3 cm; (b) i.d. = 3.98 cm; (c) i.d. = 5.1 cm; (d) i.d. = 7.7 cm.
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Figure 2. (a) Column diameter impact on measured coil loss; solution conductivity = 8.57 S/m; error
bars on theory curve are due to a wall thickness variability of ±0.25 mm; (b) effects of wall thickness
and column height removed; column height = 16.0 cm; conductivity = 1.0 S/m.
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Figure 3. Sketch showing placement of double-layer, PCB-based coil against column wall; note that
liquid column height varies with column I.D. (inner diameter) and O.D. (outer diameter) — only the
liquid column is meshed.

single conductivity, 8.57 S/m and 1.0 S/m respectively. As column diameter increases in Figure 2(a),
the discrepancy between theory and experiment disappears, with data at the highest column diameter
showing no significant difference between theory and experiment. Since the experimental procedure
involved changing both wall thickness and column height, Figure 2(b) is included to illustrate the effect
of column diameter alone, at two different coil-column spacing’s. Figure 2(b) illustrates that coil loss is
slightly more sensitive to column diameter when coil diameter is less than one column diameter. Future
work will investigate the nature of this curve for alternate coil designs.

In reality, the large jumps in relative permittivity explored here are not encountered in practice, even
in the case of bone adjacent to muscle — relative permittivities for muscle, bone and fat are ∼ 100,
50 and 35, respectively. Even with large, sudden changes in relative permittivity, as shown in [14],



6 Feldkamp and Quirk

image reconstruction through inversion of Equation (1) is not impaired, though there does appear to
be some minor amount of contrast error in cases of extreme relative permittivity change. Consequently,
given further progress in instrumentation design, and improvement in image reconstruction algorithms
centered around Equation (1), we expect that single-coil MIT will eventually become useful for low-cost,
portable imaging applications.
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