Vol. 158
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2017-04-03
Realization of All-Optical Digital Amplification in Coupled Nonlinear Photonic Crystal Waveguides
By
Progress In Electromagnetics Research, Vol. 158, 63-72, 2017
Abstract
In this conceptual study, all-optical amplification of the light pulses in two weakly coupled nonlinear photonic crystal waveguides (PCWs) is proposed. We consider two adjacent PCWs, which consist of line defects in a 2D square lattice of periodically distributed circular rods made from dielectric material with Kerr-type nonlinearity. Dispersion diagrams of the PCW's symmetric and antisymmetric modes are analyzed using a recently developed analytical formulation. The operating frequency is properly chosen to be located at the edge of the PCW's dispersion diagram (i.e. adjacent to the photonic crystals low-energy band edge), where in the linear case no propagation modes are excited. However, in case of a nonlinear medium when the amplitude of the injected signal is above some threshold value, solitons are formed propagating inside the coupled nonlinear PCWs. The near field distributions of the propagating light pulse inside the coupled nonlinear PCWs and the output power of the received signal are numerically studied in a detail. A very good agreement between the analytic soliton solution based on the nonlinear Schrödinger equation and numerical result is obtained. Amplification coefficients are calculated for the various amplitudes of the input signals. The results vividly demonstrate the effectiveness of the weakly coupled nonlinear PCWs as an all-optical digital amplifier.
Citation
Vakhtang Jandieri, Ramaz Khomeriki, Daniel Erni, and Weng Cho Chew, "Realization of All-Optical Digital Amplification in Coupled Nonlinear Photonic Crystal Waveguides," Progress In Electromagnetics Research, Vol. 158, 63-72, 2017.
doi:10.2528/PIER17010704
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Khomeriki, R. and J. Leon, "All-optical amplification in metallic subwavelength linear waveguides," Phys. Rev. A, Vol. 87, 053806-053809, 2013.
doi:10.1103/PhysRevA.87.053806

4. Jandieri, V. and R. Khomeriki, "Linear amplification of optical signal in coupled photonic crystal waveguides," IEEE Photonics Technology Letters, Vol. 27, 639-641, 2015.
doi:10.1109/LPT.2014.2388354

5. Malaguti, S., G. Bellanca, S. Combrie, A. de Rossi, and S. Trillo, "Temporal gap solitons and all-optical control of group delay in line-defect waveguides," Phys. Rev. Lett., Vol. 109, 163902, 2012.
doi:10.1103/PhysRevLett.109.163902

6. Cuesta-Soto, F., A. Martinez, J. Garcia, F. Ramos, P. Sanchis, J. Blasco, and J. Marti, "All-optical switching structure based on a photonic crystal directional coupler," Optics Express, Vol. 12, 161-167, 2004.
doi:10.1364/OPEX.12.000161

7. Adibi, A., Y. Xu, R. Lee, A. Yariv, and A. Scherer, "Properties of the slab modes in photonic crystal optical waveguides," J. Lightwave Technology, Vol. 18, 1554-1564, 2000.
doi:10.1109/50.896217

8. Qiu, M., K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, "Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals," Phys. Rev. B, Vol. 64, 155113-155117, 2001.
doi:10.1103/PhysRevB.64.155113

9. Monat, C., B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. Pelusi, D. Moss, B. Eggleton, T. White, and T. Krauss, "Slow light enhanced nonlinear optics in silicon photonic crystal waveguides," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 16, No. 1, 344-356, 2010.
doi:10.1109/JSTQE.2009.2033019

10. Blanco-Redondo, A., C. Husko, D. Eades, Y. Zhang, J. Li, T. Krauss, and B. Eggleton, "Observation of soliton compression in silicon photonic crystals," Nature Communications, Vol. 5, 2014.

11. Geniet, F. and J. Leon, "Energy transmission in the forbidden band gap of a nonlinear chain," Phys. Rev. Lett., Vol. 89, 134102-134105, 2002.
doi:10.1103/PhysRevLett.89.134102

12. Khomeriki, R., "Nonlinear bandgap transmission in optical waveguide arrays," Phys. Rev. Lett., Vol. 92, 063905-063908, 2004.
doi:10.1103/PhysRevLett.92.063905

13. Chen, W. and D. L. Mills, "Gap solitons and the nonlinear optical response of superlattices," Phys. Rev. Lett., Vol. 58, 160-163, 1987.
doi:10.1103/PhysRevLett.58.160

14. Martijn de Sterke, C. and J. E. Sipe, "Envelope-function approach for the electrodynamics of nonlinear periodic structures," Phys. Rev. A, Vol. 38, 5149-5165, 1988.
doi:10.1103/PhysRevA.38.5149

15. Martijn de Sterke, C. and J. E. Sipe, "Coupled modes and the nonlinear Schrodinger equation," Phys. Rev. A, Vol. 42, 550-555, 1990.
doi:10.1103/PhysRevA.42.550

16. Agrawal, G. P., Nonlinear Fiber Optics, Academic Press, 1989.

17. Kivshar, Y. S. and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, 2003.

18. Akhmediev, N. N. and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams, Chapman and Hall, 1997.

19. Segev, M., B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett., Vol. 68, 923-926, 1992.
doi:10.1103/PhysRevLett.68.923

20. Christodoulides, D. N. and R. I. Joseph, "Discrete self-focusing in nonlinear arrays of coupled waveguides," Opt. Lett., Vol. 13, 794-796, 1988.
doi:10.1364/OL.13.000794

21. Mandelik, D., H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchinson, "Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons," Phys. Rev. Lett., Vol. 90, 053902-053905, 2003.
doi:10.1103/PhysRevLett.90.053902

22. Khomeriki, R. and J. Leon, "Bistable light detectors nonlinear waveguide arrays," Phys. Rev. Lett., Vol. 94, 243902-243905, 2005.
doi:10.1103/PhysRevLett.94.243902

23. Khomeriki, R. and J. Leon, "Driving light pulses with light in two-level media," Phys. Rev. Lett., Vol. 99, 183601-183604, 2007.
doi:10.1103/PhysRevLett.99.183601

24. Christodoulides, D. N. and R. I. Joseph, "Slow Bragg solitons in nonlinear periodic structures," Phys. Rev. Lett., Vol. 62, 1746-1749, 1989.
doi:10.1103/PhysRevLett.62.1746

25. Millar, P., R. M. De La Rue, T. F. Krauss, J. S. Aitchison, N. G. R. Broderick, and D. J. Richardson, "Nonlinear propagation effects in an AlGaAs Bragg grating filter," Optics Lett., Vol. 24, 685-687, 1999.
doi:10.1364/OL.24.000685

26. Aceves, A. B. and S. Wabnitz, "Self-induced transparency solitons in nonlinear refractive periodic media," Phys. Rev. A, Vol. 141, 37-42, 1989.

27. Conti, C. and S. Trillo, "Bifurcation of gap solitons through catastrophe theory," Phys. Rev. E, Vol. 64, 036617, 2001.
doi:10.1103/PhysRevE.64.036617

28. Krauss, T., "Slow light in photonic crystal waveguides," J. Phys. D: Appl. Phys., Vol. 40, 2666-2670, 2007.
doi:10.1088/0022-3727/40/9/S07

29. Yasumoto, K., V. Jandieri, and Y. Liu, "Coupled-mode formulation of two-parallel photonic crystal waveguides," Journal of the Optical Society of America A, Vol. 30, No. 1, 96-101, 2013.
doi:10.1364/JOSAA.30.000096

30. Jandieri, V., K. Yasumoto, and J. Pistora, "Coupled-mode analysis of contra-directional coupling between two asymmetric photonic crystals waveguides," Journal of the Optical Society of America A, Vol. 31, No. 3, 518-523, 2014.
doi:10.1364/JOSAA.31.000518

31. Taniuti, T. and N. Yajima, "Perturbation method for a nonlinear wave modulation," Journal of Mathematical Physics, Vol. 10, 1369-1372, 1969.
doi:10.1063/1.1664975

32. Oikawa, M. and N. Yajima, "A perturbation approach to nonlinear systems. II. Interaction of nonlinear modulated waves," Journal of the Physical Society of Japan, Vol. 37, 486-496, 1974.
doi:10.1143/JPSJ.37.486

33. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 1995.