1. Zhao, Y., Z. Zhang, and Z. Feng, "An electrically large metallic cavity antenna with circular polarization for satellite applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1461-1464, 2011.
doi:10.1109/LAWP.2011.2178585
2. Kumar, A., S. Sharma, and G. Singh, "Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies," Progress In Electromagnetics Research, Vol. 69, 47-54, 2007.
doi:10.2528/PIER06111204
3. Gao, J., "Analytical formulas for the resonant frequency changes due to opening aperture on cavity walls," Nuclear Instruments and Methods in Physics Research, Vol. A311, 437-443, 1992.
doi:10.1016/0168-9002(92)90638-K
4. Shang, K., L. Yan, K. Wen, Z. Guo, Y. Guo, W. Pan, and X. Luo, "Separation of resonance modes in nanoring resonator by a cascaded slot cavity," Modern Physics Letters B, Vol. 26, No. 23, 2012.
doi:10.1142/S0217984912501503
5. Ateeq, M., A. Shaw, L. Wang, and P. Dickson, "An innovative microwave cavity sensor for non-destructive characterisation of polymers," Sensors and Actuators A, Vol. 251, 156-166, 2016.
doi:10.1016/j.sna.2016.10.019
6. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, 163-182, 1944.
doi:10.1103/PhysRev.66.163
7. Bouwkamp, C. J., "On Bethe's theory of diffraction by small holes," Philips Res Rep., Vol. 5, 321-332, 1950.
8. Stevenson, A. F., "Theory of slots in rectangular waveguides," J. Appl. Phys., Vol. 19, 24-38, January 1948.
doi:10.1063/1.1697868
9. Silver, S. and W. Saunders, "The external field produced by a slot in an infinite circular cylinder," Journal of Applied Physics, Vol. 21, 153-158, February 1950.
doi:10.1063/1.1699615
10. Galejs, J., "Admittance of a rectangular slot which is backed by a rectangular cavity," IEEE Transactions on Antennas and Propagation, Vol. 67D, No. 2, 119-126, 1963.
doi:10.1109/TAP.1963.1138001
11. Omiya, M., T. Hikage, N. Ohno, K. Horiguchi, and K. Itoh, "Design of cavity-backed slot antennas using the finite-difference time-domain technique," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 12, 1853-1858, December 1998.
doi:10.1109/8.743823
12. Hirokawa, J., H. Arai, and N. Goto, "Cavity-backed wide slot antenna," Proc. Inst. Elect. Eng., Vol. 136, pt. H, No. 1, 29-33, February 1989.
13. Umashankar, K., A. Taflove, and B. Beker, "Calculation and experimental validation of induced currents on coupled wires in an arbitrary shaped cavity," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 11, 1248-1257, November 1987.
doi:10.1109/TAP.1987.1144000
14. Wounchoum, P., D. Worasawate, C. Phongcharoenpanich, and M. Krairiksh, "A two-slot array antenna on a concentric sectoral cylindrical cavity excited by a coupling slot," Progress In Electromagnetics Research, Vol. 86, 135-154, 2008.
doi:10.2528/PIER08091204
15. Kobayashi, K., "Some diffraction problems involving modified Wiener-Hopf geometries," Analytical and Numerical Methods in Electromagnetic Wave Theory, edited by M. Hashimoto, M. Idemen, O. A. Tretyakov, Science House Co., Ltd., Chapter 4, 147{228, 1993.
16. Kuryliak, D. B., K. Kobayashi, S. Koshikawa, and Z. T. Nazarchuk, "Wiener-Hopf analysis of the diffraction by circular waveguide cavities," Journal of the Institute of Science and Engineering, Vol. 10, 45-51, Tokyo, Chuo University, March 2004.
17. Kuryliak, D. B., K. Kobayashi, S. Koshikawa, and Z. T. Nazarchuk, "Wiener-Hopf analysis of the axial symmetric wave diffraction problem for a circular waveguide cavity," International Workshop on Direct and Inverse Wave Scattering, 2-672-81, Gebze, Turkey, 2000.
18. Vinogradov, S. S., P. D. Smith, and E. D. Vinogradova, Canonical Problems in Scattering and Potential Theory. Part II: Acoustic and Electromagnetic Diffraction by Canonical Structures, Chapman & Hall/CRC, 2002.
doi:10.1201/9780849387067
19. Shestopalov, V. P., Summation Equations in the Modern Theory of Diffraction, Naukova Dumka, 1983 (in Russian).
20. Ilchenko, M. E. and A. A. Trubin, The Theory of Dielectric Resonators, Lybid, 1993 (in Russian).
21. Kuryliak, D. B., "Axially symmetric electromagnetic wave diffraction from perfectly conducting finite conical shell in sectorial piecewise homogeneous dielectric medium," Reports of National Academy of Sciences of Ukraine, A, 31-34, 1987 (in Russian).
22. Kuryliak, D. B., "Symmetrical electromagnetic excitation of the piecewise homogeneous dielectric sphere with finite conical inclusion (E-, H- polarization)," Izvestiya Vuzov. Electro-mechanics, No. 1-2, 3-10, 1996 (in Russian).
23. Kuryliak, D. B., "Symmetrical electromagnetic excitation of the homogeneous dielectric sphere with finite conical inclusion (TM-, TE-waves)," Izvestiya Vuzov. Radioelectronika, Vol. 40, No. 2, 27-35, 1997 (in Russian).
24. Garcia-Gracia, H. and J. C. Gutierrez-Vega, "Scalar wave scattering in spherical cavity resonator with conical channels," J. Opt. Soc. Am. A, Vol. 31, No. 2, 246-252, 2014.
doi:10.1364/JOSAA.31.000246
25. Drobakhin, O. O., P. I. Zabolotny, and E. N. Privalov, "Resonant properties of microwave resonators in the form of a spherical sector," Radioelektronika, Informatyka, Upravlinnia, No. 2, 11-16, 2009 (in Russian).
26. Van't Hof, J. P. and D. D. Stancil, "Eigenfrequencies of a truncated conical resonator via the classical and Wentzel-Kramers-Brillouin methods," Transactions on Microwave Theory and Techniques, Vol. 56, No. 8, 1909-1916, 2008.
doi:10.1109/TMTT.2008.927408
27. Nesterenko, M. V., V. A. Katrich, Yu. M. Penkin, and S. L. Berdnik, "Analytical methods in theory of slot-hole coupling of electrodynamics volumes," Progress In Electromagnetics Research, Vol. 70, 79-174, 2007.
doi:10.2528/PIER06121203
28. Barannik, A. A., S. A. Bunyaev, and N. T. Cherpak, "Scoop tapered quasi-optical resonator," Technical Physics Letters, Vol. 31, No. 19, 1-5, 2005 (in Russian).
29. Mayer, B., A. Reccius, and R. Knochel, "Conical cavity for surface resistance measurements of high temperature superconductors," IEEE Transactions on Microwave Theory and Technlques, Vol. 40, No. 2, 1992.
30. Ash, E. A. and G. Nichols, "Super-resolution aperture scanning microscope," Nature, Vol. 237, 510-512, 1972.
doi:10.1038/237510a0
31. Drezet, A., J. C. Woehl, and S. Huant, "Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field scanning optical microscopy," Physical Review E, Vol. 65, 2002.
32. Kolodij, B. I. and D. B. Kuryliak, "Axially-symmetric wave diffraction problem for excitation of finite conical shell by radial electric dipole," Report of National Academy of Sciences of Ukraine, No. 12, 31-34, 1986 (in Ukrainian).
33. Kolodij, B. I. and D. B. Kuryliak, Axially-symmetric Electromagnetic Wave Diffraction Problems for Conical Surfaces, Naukova Dumka, 1995 (in Ukrainian).
34. Kuryliak, D. B., "Series equations with associated Legendre functions on the boundary of conical and spherical regions and their application in scalar problems of the diffraction theory," Report of National Academy of Sciences of Ukraine, No. 10, 70-78, 2000 (in Russian).
35. Kuryliak, D. B. and Z. T. Nazarchuk, "Analytical-numerical Methods in the Theory of Wave Diffraction on Conical and Wedge-shaped Surfaces," Naukova Dumka, 2006 (in Ukrainian).
36. Kuryliak, D. B. and Z. T. Nazarchuk, "Convolution type operators for wave diffraction by conical structures," Radio Science, Vol. 43, RS4S03, 2008, doi: 10.1029/2007RS003792.
37. Kuryliak, D. B., Z. T. Nazarchuk, and V. O. Lysechko, "Diffraction of a plane acoustic wave from a finite soft (rigid) cone in axial irradiation," Open Journal of Acoustics, Vol. 5, No. 4, 193-206, 2015, http://dx.doi.org/10.4236/oja.2015.54015.
doi:10.4236/oja.2015.54015
38. Kuryliak, D. B. and O. M. Sharabura, "Diffraction of axially-symmetric TM-wave from Bi-cone formed by finite and semi-infinite shoulders," Progress In Electromagnetics Research B, Vol. 68, 73-88, 2016.
doi:10.2528/PIERB16041302
39. Kuryliak, D. B., "Axially-symmetric field of electric dipole over truncated cone. I. Comparison between mode-matching technique and integral transformation method," Radio Physics and Radio Astronomy, Vol. 4, No. 2, 121-128, 1999; ``Axially-symmetric field of electric dipole over truncated cone. II. Numerical Modeling," Radio Physics and Radio Astronomy, Vol. 5, No. 3, 284-290, 2000.
40. Kuryliak, D. B. and Z. T. Nazarchuk, "Development of the methods of analytical regularization in the theory of diffraction," Materials Science, Vol. 47, No. 2, 160-176, 2011.
doi:10.1007/s11003-011-9381-x
41. Gradshteyn, I. S. and I. M. Ryzhik, Tables of Integrals, Series and Products, Dover, 1972.
42. Agranovich, M. S., B. Z. Katsenelenbaum, A. N. Sivov, and N. N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH, 1999.
43. Kiselev, A. A. and B. S. Pavlov, "The eigenvalues and eigenfunctions of Laplace operator with Neuman boundary conditions in the system of two connected resonators," Theoretical and Mathematical Physics, Vol. 100, No. 3, 354-366, 1994.
doi:10.1007/BF01018571