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Axially-Symmetric TM-Waves Diffraction by Sphere-Conical Cavity

Dozyslav B. Kuryliak, Zinoviy T. Nazarchuk, and Oksana B. Trishchuk*

Abstract—The problem of axially-symmetric TM-wave diffraction from the perfectly conducting
sphere-conical cavity is analysed. The cavity is formed by a semi-infinite truncated cone; one of the
sectors of this cone is covered by the spherical diaphragm. The problem is formulated in terms of scalar
potential for spherical coordinate system as a mixed boundary problem for Helmholtz equation. The
unknown scalar potential of the diffracted field is sought as expansion in series of eigenfunctions for
each region, formed by the sphere-conical cavity. Using the mode matching technique and orthogonality
properties of the eigenfunctions, the solution to the problem is reduced to an infinite set of linear
algebraic equations (ISLAE). The main part of asymptotic of ISLAE matrix elements determined for
large indexes identifies the convolution type operator. The corresponding inverse operator is represented
in an explicit form. The convolution type operator and corresponding inverse operator are applied to
reduce the problem to the ISLAE of the second kind. This procedure determines the new analytical
regularization method for the solution of wave diffraction problems for the sphere-conical cavity. The
unknown expansion coefficients, which are determined from the ISLAE by the reduction, belong to the
space of sequences that allow obtaining the solution which satisfies all the necessary conditions with
the given accuracy. The particular cases, such as transition from sphere-conical cavity to the open
hemispherical resonator, as well as the low frequency approximation, are analysed. The numerically
obtained results are applied to the analysis of TM-waves radiation through the circular hole in the
cavity.

1. INTRODUCTION

Cavities connected with the open space through the slot/hole in their walls are widely applied to
communication and measuring systems [1, 2], particles accelerators [3], nano-technologies and materials
diagnostics [4, 5] to achieve the necessary radiation characteristics in the wide frequency band; the
millimeter and sub-millimeter wavelengths are also included into this range. The theoretical methods for
analysis of the radiating properties of the slot/hole were first elaborated in the mid-1940s [6–10]. These
methods, however, considered only the small holes and offered approximate formulations of the boundary
problems. Further development of theoretical methods to study the radiation from/through the hole
is based on mathematically correct formulation of the boundary value problems. The direct numerical
method [11], integral equations [12] and hybrid methods [13, 14] were developed for the analysis of the
slot/hole radiation problems. Unfortunately these powerful tools require long computation time for
determination of the diffraction characteristics and verification of the results, particularly for resonance
regimes, quasi-optical diapasons, as well as for the near field calculations. For simple geometries,
the mode matching technique is usually applied to electrodynamics analysis. But in most cases, the
application of this technique is formal and also requires validation. Therefore, it is important to expand
the number of models allowed for mathematically rigorous electrodynamics analysis. Correct accounting
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of field singularities near the edges and tips, as well as deduction of the rules for reduction of the ISLAE,
are included in this analysis. The Wiener-Hopf method and Fourier transform have been used in [15–
17] for rigorous analysis of the radiation from the flat and cylindrical cavities. The rigorous analysis
of radiation from the spherical volumes with the circular hole has been studied by using the analytical
regularization technique in [18, 19]. Spherical dielectric resonators with metal semi-infinite and finite
conical inserts have been considered in [20–23]. Quantum-scale sphere-conical resonators have been
analysed in [24]. Closed sphere-conical resonators have been examined in [25, 26]. A new approximate
technique for the analysis of electromagnetic waves radiation through the slots in resonators is developed
in [27]. Experimental research of resonators containing conical structures has been offered in [28].

This paper discusses a new open resonant structure which allows for the rigorous electrodynamics
analysis. The cavity is formed by a semi-infinite truncated circular cone, in which one of the sectors
is covered by spherical diaphragm. In other words, the sphere-conical resonator with a circular hole
is considered. For various geometrical parameters, such a structure allows simulation of a number
of radiated elements: probes [29], hemispherical cavities [30], tapered and metal-coated optical fiber
tips [31], etc. We apply the field expansion in the series of eigenfunctions and mode matching techniques
to reduce the problem to the ISLAE. The key idea, which we develop here, consists in separating the
singular operator from the initial ISLAE and derivation of the operator which allows for inversion of
this singular operator analytically. This allows for reduction of the problem to the second kind of
the ISLAE and to justify this reduction procedure rigorously. The proposed approach is called the
method of analytical regularization or semi-inversion method. This approach was used earlier for the
studies of the diffraction of acoustic and electromagnetic waves from conical, bi-conical, and wedge
structures [21–23, 32–40].

2. STATEMENT OF THE PROBLEM

Let us consider a perfectly conducting semi-infinite truncated circular cone with the infinitely thin wall.
One of the two conical sectors is closed by perfectly conducting spherical diaphragm, and it forms an
open sphere-conical resonator (Fig. 1(a)). In the spherical coordinates (r, θ, ϕ), this structure can be
expressed as

Q =
{

(r, θ, ϕ)|r ∈
{

(c1,∞), θ = γ + 0
(c1, c), θ = γ − 0

}
, θ = γ

}
∪

ϕ∈ [0,2π)
{(r, θ, ϕ)|r = c, θ ∈ [0, γ]} , (1)

where γ is the spherical aperture angle; c1 is the radial coordinates of the rib of the hole; c is the radius
of the spherical diaphragm.

Let Q be excited by TM -wave, produced by radial electric dipole which is located outside of the
structure, on the axis of symmetry at r = r0 < c1 and Er, Eθ, Hϕ �= 0. Then the total field radiated
from resonance cavity will also have the property of axial symmetry. Time factor e−iωt is suppressed
throughout this paper. The problem is to find the distribution of the field components established in
the presence of cone Q.

The problem is formulated in terms of Debye scalar potential U = U(r, θ) that satisfies the
Helmholtz equation. The components of the field are expressed as follows

Er = − 1
r sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)
, Eθ =

1
r

∂2

∂r∂θ
(rU) , Hϕ = ikZ−1 ∂U

∂θ
. (2)

Here k is the wave number (k = k′ + ik′′ = ω
√
εμ, k′, k′′ > 0, i =

√−1; ε and μ are the permittivity
and permeability of the continuum), and Z =

√
μ/ε is the wave resistance.

In view of Eq. (2), the diffraction problem is reduced to the boundary value problem proceeding
from the Helmholtz equation

ΔU + k2U = 0 (3)

with boundary conditions

1
r sin θ

∂

∂θ

(
sin θ

∂U t

∂θ

)
= 0, if

{
r ∈ (c1,∞) for θ = γ + 0
r ∈ (c1, for θ = γ − 0 , (4)
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(a) (b)

Figure 1. Geometrical schemes, (a) open sphere-conical resonator, (b) hemispherical resonator with a
hole.

1
r

∂2(rU t)
∂r∂θ

= 0, if r = c, θ ∈ [0, γ]. (5)

Here U t(r, θ) = U(r, θ) + U i(r, θ) is the potential of the total field; U = U(r, θ), U (i)(r, θ) are diffracted
field and incident field illuminated by the radial dipole respectively;

Δ =
∂2

∂ r2
+

2
r

∂

∂ r
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
. (6)

We search for the solution of the mixed boundary value problem in Eqs. (3)–(5) in the class of
functions that satisfy the Silver-Muller radiation condition in form

lim r
r→∞

[
�ir × �H + Z−1 �E

]
= 0, (7)

as well as energy bounded condition as∫
V

(
ε| �E|2 + μ| �H|2

)
dv <∞. (8)

Here V is any finite volume of integration.
Next, we represent the potential of the dipole field radiation in spherical coordinates as

U i(r, θ) =
1√
srsr0

∞∑
n=1

A(0)
n Pzn−1/2(cos θ)

{
Izn(sr0)Kzn(sr), r ≥ r0
Kzn(sr0)Izn(sr), r ≤ r0

}
, (9)

where A(0)
n = 2znp0Z /r0, p0 = I

(e)
r h is the dipole moment, I(e)

r the electric current, h the dipole length;
s = −ik; Izn(·) and Kzn(·) are the modified Bessel and Macdonald functions respectively, Pzn−1/2(·) is
Legendre function with subscripts zn = n+ 1/2, n = 1, 2, 3, . . ..

3. SOLUTION OF THE PROBLEM

To solve the boundary value problem in Eqs. (3)–(5), we split the solution space into the partial domains

D1 : {r ∈ (0, c1); θ ∈ [0, π]; ϕ ∈ [0, 2π)},
D

(1)
2 : {r ∈ (c1, c); θ ∈ [0, γ); ϕ ∈ [0, 2π)} , D(2)

2 : {r ∈ (c1,∞); θ ∈ (γ, π]; ϕ ∈ [0, 2π)} . (10)

Assuming that the source of the incident field is located in D1 domain, we expand the desired
potential in eigenfunctions of the Helmholtz equation as applied to partial domains in Eq. (10) as
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follows

U(r, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U i(r, θ)+
1√
ρ

∞∑
n=1

x̄(1)
n Pzn−1/2(cos θ)

Izn(ρ)
Izn(ρ1)

, ρ, θ ∈ D1;

1√
ρ

∞∑
p=1

Pνp−1/2(cos θ)
[
y(2,1;1)

p

Kνp(ρ)
Kνp(ρ1)

+ y(2,1;2)
p

Iνp(ρ)
Iνp(ρ1)

]
, ρ, θ ∈ D

(1)
2 ;

1√
ρ

∞∑
k=1

y
(2,2)
k Pμk−1/2(− cos θ)

Kμk
(ρ)

Kμk
(ρ1)

, ρ, θ ∈ D
(2)
2 .

(11)

Here x̄
(1)
n , y(2,1;1)

p , y(2,1;2)
p , y(2,2)

k are unknown expansion coefficients; ρ = sr, ρ1 = sc1, {νp}∞p=1 and
{μk}∞k=1 are the growing sequences of the positive roots of the transcendental equations

Pν−1/2(cos γ) = 0, (12a)
Pμ−1/2(− cos γ) = 0. (12b)

Expression (11) corresponds to the total and diffracted field potential in domains D2 and D1,
respectively.

The unknown coefficients will be found in the class of sequences which provide the absolute and
uniform convergence of series in Eq. (11), as well as their first-order derivatives with respect to r and
θ variables. The second-order derivatives of series in Eq. (11) involved Er and Eθ components, which
are normal to the edges. These components admit the integrable singularity: Er, Eθ = O(�

ρ
−1/2

) for
�
ρ → 0, where �

ρ is the distance to the edge of the cone in the local coordinates.
The representation in Eq. (11) satisfies the radiation condition at infinity and the boundary

conditions on the conical surface.
Using the boundary condition in Eq. (5) and representation (11), we arrive at the equation as

1
2
√
ρc

∞∑
p=1

P 1
νp−1/2(cos θ)

[
y(2,1;1)

p

Kνp(ρc)
Kνp(ρ1)

+ y(2,1;2)
p

Iνp(ρc)
Iνp(ρ1)

]
+

+
√
ρc

∞∑
p=1

P 1
νp−1/2(cos θ)

[
y(2,1;1)

p

K ′
νp

(ρc)

Kνp(ρ1)
+ y(2,1;2)

p

I ′νp
(ρc)

Iνp(ρ1)

]
= 0, γ ≤ θ ≤ π.

(13)

Here ρc = sc; the prime indicates the derivation of the modified Bessel and Macdonald functions
with respect to the argument, P 1

zn−1/2(·) is associated Legendre function of the first order defined as
P 1

ν−1/2(± cos θ) = ±d/dθ[Pν−1/2(± cos θ)] [41].
From Equation (13) we get the correlation between the coefficients as

y(2,1;2)
p = y(2,1;1)

p Υνp(ρ1, ρc), (14)

where p = 1, 2, 3, . . .;

Υνp(ρ1, ρc) = −Iνp(ρ1)Kνp(ρc)
Kνp(ρ1)Iνp(ρc)

[
1 + 2ρcK

′
νp

(ρc)/Kνp(ρc)

1 + 2ρcI ′νp
(ρc)/Iνp(ρc)

]
. (15)

The unknown coefficients in Eq. (11) can be found using the continuity conditions of total field
tangential components on the spherical surface r = c1 containing the circular rib of the hole. These
conditions lead to the series equations for finding the unknowns. In order to take into account the
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singularity of Et
θ(r, θ) at the conical edge, we present these equations by way of

lim
N→∞

N∑
n=1

P 1
zn−1/2(cos θ)

[
x̄(1)

n +AnKzn(ρ1)Izn(ρ0)
]

=

=

⎧⎪⎪⎨
⎪⎪⎩

lim
P→∞

P∑
p=1

y
(2,1;1)
p P 1

νp−1/2(cos θ)
[
1 + Υνp(ρ1, ρc)

]
, θ ∈ [0, γ),

− lim
K→∞

K∑
k=1

y
(2,2)
k P 1

μk−1/2(− cos θ), θ ∈ (γ, π],
(16)

lim
N→∞

N∑
n=1

P 1
zn−1/2(cos θ)

[
x̄(1)

n

I ′zn
(ρ1)

Izn(ρ1)
+AnK

′
zn

(ρ1)Izn(ρ0)
]

=

=

⎧⎪⎪⎨
⎪⎪⎩

lim
P→∞

P∑
p=1

y
(2,1;1)
p P 1

νp−1/2(cos θ)
[

K ′
νp(ρ1)

Kνp(ρ1) +
I′νp(ρ1)

Iνp(ρ1)Υνp(ρ1, ρc)
]
, θ ∈ [0, γ),

− lim
K→∞

K∑
k=1

y
(2,2)
k P 1

μk−1/2(− cos θ)
K ′

μk
(ρ1)

Kμk
(ρ1) , θ ∈ (γ, π],

(17)

where ρ0 = sr0, An = A
(0)
n /

√
ρ0.

In order to reduce series Equations (16), (17) to the infinite system of linear algebraic equations
(ISLAE), we use the property of orthogonality of Legendre functions, which leads to

P 1
zn−1/2(cos θ) = q(zn, γ) lim

P (K)→∞

P (K)∑
p=1

ηpα
±(ηp, γ)

η2
p − z2

n

P 1
ηp−1/2(± cos θ). (18)

Here upper and lower signs correspond to the angle regions θ ∈ [0, γ) with ηp = νp and θ ∈ (γ, π] with
ηp = μp respectively;

q(zn, γ) = (z2
n − 1/4)Pzn−1/2(cos γ), (19a)

α±(ηp, γ) = ∓ 2
{
(η2

p − 1/4)∂Pηp−1/2(± cos γ)/∂η
}−1

. (19b)

Then, we prove the following theorem on the convergence of the series in Eq. (18):
Theorem. For any γ, which belongs to 0 ≤ γ ≤ π, the upper and lower series on the right-hand

part of Eq. (18) are uniformly convergent to the function P 1
zn−1/2(− cos θ)/q(zn, γ) for any θ ∈ [0, γ] and

θ ∈ [γ, π] respectively.
Proof. Let us consider the integral

J±
n (θ) =

1
2πi

∫
CR

tP 1
t−1/2(± cos θ)dt

(t2 − z2
n)(t2 − 1/4)Pt−1/2(± cos γ)

. (20)

Here CR is the circular integration path in complex plane t; the points t = 0 and t = R are the center
and radius of this circle, respectively; CR outline encompasses the simple poles of the integrand at
t = ±zn and t = ±νk (k = 1, 2, 3, . . .). For |t| → ∞ the integrand as a function of t tends to zero not
slower than t−2, therefore J±

n (θ) → 0 if R→ ∞. Then, applying the residues theorem, we arrive at the
statement of the theorem.

Let us substitute series in Equation (18) into Equations (16) and (17). Next, limiting the finite
number of unknowns and excluding y

(2,1;1)
p , y(2,2)

k , we come to the finite system of linear algebraic
equations as follows

N∑
n=1

x(1)
n

{
ρ1W [Kνp, Izn ]ρ1

(ν2
p − z2

n)Kνp(ρ1)Izn(ρ1)
+
ρ1W [Iνp , Izn ]ρ1Υνp(ρ1, ρc)
(ν2

p − z2
n)Iνp(ρ1)Izn(ρ1)

}
= f (1)

νp
, p = 1, . . . , P, (21a)

N∑
n=1

x(1)
n

ρ1W [Kμk
, Izn ]ρ1

(μ2
k − z2

n)Izn(ρ1)Kμk
(ρ1)

= f (1)
μk
, k = 1, . . . ,K. (21b)



6 Kuryliak, Nazarchuk, and Trishchuk

Here x(1)
n = x̄

(1)
n q(zn, γ); W [fν , ϕμ]x = fν(x)ϕ′

μ(x) − f ′ν(x)ϕμ(x); N = P +K,

f (1)
νp

=
N∑

n=1

Anq(zn, γ)Kzn(ρ1)Izn(ρ0) ×

×
{

ρ1W [Kzn ,Kνp ]ρ1

(ν2
p − z2

n)Kzn(ρ1)Kνp(ρ1)
+
ρ1W [Kzn , Iνp ]ρ2Υνp(ρ1, ρc)
(ν2

p − z2
n)Kzn(ρ1)Iνp(ρ1)

}
, (22a)

f (1)
μk

=
N∑

n=1

Anq(zn, γ)Kzn(ρ1)Izn(ρ0)
ρ1W [Kzn ,Kμk

]ρ1

(μ2
k − z2

n)Kzn(ρ1)Kμk
(ρ1)

. (22b)

We introduce this limitation to provide the correct transition from Equation (21) to the ISLAE,
which solution satisfies the Meixner condition at the conical edge. For this purpose, we introduce a
growing sequence of roots {νk}∞k=1, {μp}∞p=1 of transcendental Equation (12) as

{ξp}∞p=1 = {νp}∞p=1 ∪ {μk}∞k=1. (23)

Next, in Equation (21) we pass to the limit P,K,N → ∞ (N = P +K) and arrange the ISLAE
according to the sequence (23) as

(A11 +B11)X(1) = F1. (24)

Here X1 : {x(1)
n }∞n=1 is the unknown vector, A11 : {a(1,1)

pn }∞p,n=1, B11 : {b(1,1)
pn }∞p,n=1 are infinite matrixes

with the elements:

a(1,1)
pn =

ρ1W [Kξp , Izn ]ρ1

(ξ2p − z2
n)Kξp(ρ1)Izn(ρ1)

; (25)

b(1,1)
pn =

{
ρ1W [Iξp ,Izn ]ρ1Υξp (ρ1,ρc)

(ξ2
p−z2

n)Iξp(ρ1)Izn(ρ1)
, if ξp ∈ {νp}∞p=1,

0, if ξp ∈ {μk}∞k=1 ,
(26)

F1 : {f (1)
p }∞p=1 is the known vector; {f (1)

p }∞p=1 ≡ {f (1)
ξp

}∞p=1 = {f (1)
νp }∞p=1 ∪ {f (1)

μk }∞k=1, l = 1, 2 is the

sequence formed by the elements f (1)
νp , f

(1)
μk (see Equation (22)) that are placed according to the condition

in Eq. (23).
Next, we apply the analytical regularisation procedure for reducing of the ISLAE (24) to the ISLAE

of the second kind.

4. REGULARISATION OF THE ISLAE

Taking into account the asymptotic properties of the modified Bessel and Macdonald functions for large
indices, we find that

a(1,1)
pn =

1
ξp − zn

+

{
O

(
1

ξpzn(ξp−zn)

)
, ξp, zn � |sc1|;

O
(
(sc1/2)2

)
, |sc1| → 0.

(27)

Asymptotic behavior of the matrix elements b(1,1)
pn from Eq. (26) in the case is ξp, zn � |sc1| or |sc1| → 0,

|sc| → 0, c > c1 looks as

b(1,1)
pn = O

(
(c1/c)

2ξp

ξp + zn

)
. (28)

Let us introduce the operator formed with the main parts of the asymptotic expression (27) and
the corresponding inverse operator as [21, 35, 36]

A :
{
apn =

1
ξp − zn

}∞

p,n=1

, (29)

A−1 :
{
τkp =

〈
[M−1

− (ξp)]
′M ′

−(zk)(zk − ξp)
〉−1

}∞
k,p=1

. (30)
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Here, the product of operators in Eqs. (29), (30) represents the identity matrix I: A−1A = I;
M ′−(ηk) = d/dη [M−(η)]η=ηk

; M−(ν) is determined from the factorization of the even meromorphic
function M(ν), which is regular in the strip Π : {|Reν| < 1/2} with simple zeroes and poles at ν = ±zk,
ν = ±ξj that are located on the real axis out of the Π;

M(ν) = M+(ν) ·M−(ν) =
cos πν

(ν2 − 1/4)Pν−1/2(cos γ)Pν−1/2(− cos γ)
, (31)

where M+(ν), M−(ν) are split functions, regular in the right (Reν > −1/2) and in the left (Reν < 1/2)
half-planes respectively; M(ν) = O(ν−1) and M+(ν) = M−(−ν) = O(ν−1/2), if |ν| → ∞ in the
regularity region;

M− (ν) =

⎧⎨
⎩B0 (1/2 − ν) Γ (1/2 − ν) e−νχ

∞∏
p=1

(1 − ν/ξp) eν/ξp

⎫⎬
⎭

−1

. (32)

Here

B0 = −iπ−1/2
[
P−1/2(cos γ)P−1/2(− cos γ)

]1/2
,

χ =
γ

π
ln
γ

π
+
π − γ

π
ln
π − γ

π
− ψ (3/4) − S(γ) − S(π − γ),

S(γ) =
∞∑

n=1

[
γ

π (n− 1/4)
− 1
νn

]
, S(π − γ) =

∞∑
n=1

[
π − γ

π (n− 1/4)
− 1
μn

]
,

Γ(·) and ψ(τ) are gamma function and its logarithmic derivative, respectively. The formulas for effective
calculation of the matrix elements in Eq. (30) are presented in Appendix A.

Next, we formulate original diffraction problem via the ISLAE of the second kind as follows

X(1) = A−1[(A−A11) −B11]X(1) +A−1F1. (33)

The ISLAE (33) is valid for γ �= π/2.
The technique described above is elaborated in [33–35, 39, 40] and called the analytical

regularization procedure. The ISLAE (33) admits the solution in the class of sequences b(σ) : {||X|| =
sup

n
|xn|, lim

n→∞ |xnn
σ| → 0} for 0 ≤ σ < 1/2. This fulfils all the necessary conditions for the existence of

a unique solution of the ISLAE (33), including the Meixner condition on the edges.
The proof of these statements is based on the use of asymptotic estimates for matrix elements in

Eqs. (25), (26), and (30), which are given in the expressions (27), (28) and by the formula

τkp = O

(
ξ
−1/2
p z

1/2
k

zk − ξp

)
, if k, p→ ∞.

We represent the other unknown coefficients through the solution of Eq. (33) by way of

y(2,1,1)
p =

νpα
+(νp, γ)

1 + Υνp(ρ1, ρc)

∞∑
n=1

1
ν2

p − z2
n

[
x(1)

n +Anq(zn, γ)Izn(ρ0)Kzn(ρ1)
]
,

y(2,1;2)
p = y(2,1;1)

p Υνp(ρ1, ρc),

y
(2,2)
k = −μkα

−(μk, γ)
∞∑

n=1

1
μ2

k − z2
n

[
x(1)

n +Anq(zn, γ)Izn(ρ0)Kzn(ρ1)
]
,

x̄(1)
n = x(1)

n /q(zn, γ).

(34)

Taking into account the correlations in Eqs. (2), (11) and (34), we get the definitive expressions for
field representation anywhere in spherical and conical regions.
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5. TRANSITION TO THE HEMISPHERICAL CAVITY (γ = π/2)

For this particular case, the wave diffraction problem is reduced to the ISLAE (33) using the same
procedure as in the general case. Here instead of using Equation (12), we use the transcendental
equation Pν−1/2(0) = 0.

Taking into account the representation of the Legendre function for γ = π/2 as

Pν−1/2(0) =
√
π

Γ (ν/2 + 3/4) Γ (−ν/2 + 3/4)
,

we derive from Eq. (31) that

M (ν) = M+(ν) ·M−(ν) =
Γ2 (ν/2 + 3/4) Γ2 (−ν/2 + 3/4)

Γ (ν + 1/2) Γ (−ν + 1/2) (ν2 − 1/4)
. (35)

The simple zeros and poles of the meromorphic function in Eq. (35) are given by
zn = ±(2n + 1/2), ξp = ±(2p − 1/2), p, n = 1,∞; (36)

M± (ν) =
i2±νΓ2 (±ν/2 + 3/4)

Γ (±ν + 1/2) (±ν + 1/2)
, (37)

M+(ν), M−(ν) are split functions regular in overlap semi-planes Reν > −1/2, Reν < 1/2; M+(ν) =
M−(−ν) = O(ν−1/2), if |ν| → ∞ in the regularity regions.

In this particular case, we reduce our problem to Equation (24) using the positive indices given by
the expression (36), and then derive Equation (33), where the regularisation operators (29), (30) are
formed using expressions (36), (37). The formulas for effective calculation of the matrix elements in
Eq. (30), if γ = π/2, are presented in Appendix B.

6. RADIATION THROUGH THE SMALL CIRCULAR HOLE

Let us rewrite the basic ISLAE (33) by the way of

x
(1)
k =

∞∑
q=1

τkq

∞∑
n=1

(aqn − a(11)
qn )x(1)

n −
∞∑

q=1

τkq

∞∑
n=1

b(11)qn x(1)
n +

∞∑
q=1

τkqf
(1)
q , k = 1, 2, 3, . . . (38)

Let us simplify Equation (38). For this purpose we take into account the small dimensions of the
hole (|sc1/2|  1). Thus, we apply the appropriate asymptotic expressions for modified Bessel and
Macdonald functions [41] to estimate the known coefficients in Equation (38) and, neglecting the terms
of order |ρ1/2|2 in the first double series, we immediately derive the approximate equation as

x
(1)
k +

∞∑
q=1

τkqκξq(ρ1, ρc)yq =
∞∑

q=1

τkqf
(1)
q , k = 1, 2, 3, . . . . (39)

Here

yq =
∞∑

n=1

x
(1)
n

ξq + zn
, (40)

κξq(ρ1, ρc) =

⎧⎨
⎩

2(ρ1/2)2ξq

Γ(ξq)Γ(ξq+1)

[
Kξq (ρc)+2ρcK ′

ξq
(ρc)

Iξq (ρc)+2ρcI′ξq
(ρc)

]
, if ξq ∈ {νp}∞p=1,

0, if ξq ∈ {μk}∞k=1.
(41)

f
(1)
ξp

= −
∞∑

n=1

Anq(zn, γ)
(ρ0/ρ1)zn

2zn

{
1

ξp+zn
+

κξp (ρ1,ρc)

ξp−zn
, if ξp ∈ {νp}∞p=1;

1
ξp+zn

, if ξp ∈ {μp}∞p=1.
(42)

Let us introduce ρ̄c = −iωνpjc
√
εμ (p, j = 1, 2, 3, . . .), where ωνpj is the real resonant frequency

(Imωνpj = 0) of closed sphere-conical resonator, which corresponds to the resonant TMνp0j-mode and
is determined from the solution of the transcendental equation as

Iνp(ρ̄c) + 2ρ̄cI
′
νp

(ρ̄c) = 0. (43)
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Let ρc = ρ̄c +Δρc, (Δρc ≡ −iΔωνpjc
√
εμ, Δωνpj = ReΔωνpj + iImΔωνpj ) and |Δρc|  1. Under these

conditions, the further simplification of the ISLAE (39) leads to

x
(1)
k + τkpκξp(ρ1, ρc)yp = τkpf

(1)
p , ξp ∈ {νp}∞p=1; k = 1, 2, 3, . . . . (44)

The explicit solution of the ISLAE (44) looks as (see Appendix C).

x
(1)
k =

τkp [a+
ξp

+ a−ξp
κξp(ρ1, ρc)]

1 +
κξp (ρ1,ρc)

2ξp [M−1
− (ξp)]′M+(ξp)

, k = 1, 2, 3, . . . . (45)

Here we assume that parameter ρc is very close to resonant value ρ̄c. The last one satisfies the
transcendental Equation (43) for any selected indices ξp and j, with ξp ∈ {νp}∞p=1, j = 1, 2, 3, . . .;

a±ξp
= −

∞∑
n=1

Anq(zn, γ)
(ρ0/ρ1)zn

2zn(ξp ± zn)
.

Equating the denominator of the formula (45) to zero and assuming that ρ1 = −iωνpjc1
√
εμ, |ρ1/2|  1,

we arrive at the expression for determination of Δρc = Δρ∗c ≡ −iΔω∗
νpjc

√
εμ that gives the perturbation

Δω∗
νpj of the resonant frequency ωνpj as

Δω∗
νpj =

(
kνpjc1

2

)2νp

Φ(νp). (46)

Here kνpj = ωνpj
√
εμ,

Φ(νp) =
e−iπ(νp+1/2)

c
√
εμM+(νp)[M−1

− (νp)]′Γ2(νp + 1)

[
Kνp(ρ̄c) + 2ρ̄cK

′
νp

(ρ̄c)
d
dx [Iνp(x) + 2xI ′νp

(x)]x=ρ̄c

]
. (47)

This perturbation is caused by cutting of the conical vertex and appearance of the small circular
hole in the sphere-conical resonator. From the correlations in Eqs. (46), (47), it follows that Δω∗

νpj

is a complex value and depends on the truncated dimensionless radius (kνpjc1), opening angle (γ),
and resonant parameter of the closed sphere-conical resonator (ρ̄c). The problem of determination
of the eigen frequencies for the two resonators connected through the small hole, using the different
approximate techniques, was solved earlier in [6, 42, 43].

7. NUMERICAL CALCULATION

All characteristics of the scattered field are calculated by reduction of the ISLAE (33). The order of
reduction has been chosen from the condition N = |sc1|+ q with q = (4÷ 10). Based on the solution of
finite system of linear algebraic equations, we analyze the far-field characteristics for the sphere-conical
structure Q with different geometrical parameters.

Let us introduce the far-field pattern D(θ) = lim
r→∞ |krHϕ(θ)e−ikr|, where Hϕ is the total magnetic

field in region D(2)
2 . The presented curves here show the diffractive characteristics of the sphere-conical

structure Q excited axially symmetrically by the radial electric dipole in region D
(2)
2 . For calculation

we use the source field representation given in Equation (9) with p0k = 1/(4π) [A] and Z = 1 [Om].
Next, we numerically analyze the radiation of the TM -waves from the circular hole of the sphere-

conical resonator at frequencies corresponding to the resonant frequencies of the closed resonator with
the same parameters γ and c. Taking into account that the resonant frequencies/radiuses of the closed
perfectly conducting sphere-conical resonator are positive and real, we determine them from the solution
of Equation (43). For each value of νp, this equation allows obtaining the dimensionless parameter
kc = kcνpj, where cνpj is the resonance spherical radius, which corresponds to the resonant TMνp0j-mode
for closed sphere-conical volume. The examples of the resonant parameters for the closed sphere-conical
resonator with the opening angle γ = 50◦ are given in Table 1.

Here we are interested in the conditions for effective TM -modes radiation from the cavity through
the hole. For analysis of the open sphere-conical cavity we compute the modulus of the magnetic
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Table 1. Resonance parameters kcνpj for closed sphere-conical resonator if γ = 50◦.
��������νp

kcνpj j = 1 j = 2 j = 3 j = 4

ν1 = 2.74004 4.1558 7.7536 11.0408 14.2583
ν2 = 6.31862 8.0171 12.1750 15.7100 19.0845
ν3 = 9.91202 11.8250 16.3943 20.1492 23.6760

(b)(a)

Figure 2. Dependences Dγ ≡ D(γ + 0) on the parameter kc for γ = 50◦ and kr0 = 0.5; (a) kc1 = 1;
(b) kc1 = 4.5.

(a) (b)

Figure 3. Dependencies of the far field on the type of resonant mode excitation in the sphere-conical
cavity for γ = 50◦, kr0 = 0.5; kc corresponds to: (a) TMν10j-resonant modes; (b) TMν20j-resonant
modes.

field component at the conical surface θ = γ + 0 and r → ∞ as the series of Legendre functions
P 1

μk−1/2(− cos θ).
Let us consider the sphere-conical volume Q (see Fig. 1(a)), where the cavity’s hole is located near

the virtual conical vertex and the dipole is placed on the conical axis outside of the cavity area. Fig. 2(a)
shows the dependence Dγ ≡ D(γ+ 0) on kc for aperture angle γ = 50◦ and the circular hole parameter
kc1 = 1.0. The sharp peaks on this figure are plotted with the step Δ(kc) = 0.0001. We observe these
peaks for kc→ kcν1j (j = 1÷6). This means that TMν10j-resonant modes, excited in the corresponding
closed resonator, radiate effectively through the small hole (see Table 1).

As follows from Fig. 2(a) the resonant modes for higher indices νp (p > 1) that are excited in the
closed sphere-conical resonator are radiated weakly through the hole. So, the sphere-conical volume Q
with the small hole near the vertex radiates TMν10j-waves effectively and works as a mode’s filter. The
detailed analysis shows that the radiation efficiency through the circular hole depends essentially on the
radius of the hole and dipole location. When the hole’s radius kc1 grows (see Fig. 2(b); kc1 = 4.5), we
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(a) (b)

Figure 4. Dependencies Dγ on the hole radius kc1 for γ = 50◦ and the different resonant modes
excitation in the open cavity and source location kr0; kc corresponds to: (a) TMν104 — the resonant
mode; (b) TMν201 — the resonant mode.

observe slight oscillations, as well as sharp peaks of the value Dγ . We also observe maxima of these slight
oscillations for kc that are somewhat shifted from the resonant radiuses kcν1j of the closed resonator.
The sharp peaks in Fig. 2(b) correspond to radiation through the slot of the resonant TMν20j-waves
with kc → kcν2j (j = 1, 2, 3 . . ., see Table 1). We see in this figure that only TMν201-mode is radiated
effectively from the open cavity.

Also, we plot the far-field pattern dependencies on the type of resonant mode excitation in the
sphere-conical cavity Q (see Fig. 3). As follows from Fig. 3(a) the excitation of TMν10j-resonant waves
in the sphere-conical cavity forms the far field distribution that weakly depends on the resonant index j.
This can be explained by dominant influences of the first mode, excited in the region D(2)

2 . Nevertheless,
we observe such dependence for higher modes TMν20j (see Fig. 3(b)) because they are radiated from
the wider hole, and the scattered modes transformation by the conical edge becomes more effective.

To study the radiation properties of the open sphere-conical cavity we analyze the dependencies of

Table 2. Resonance parameters kcνpj for closed sphere-conical resonator with γ = 91◦.

��������νn

kcνnj j = 1 j = 2 j = 3 j = 4

ν1 = 1.48273 2.7240 6.0933 9.2920 12.4607
ν2 = 3.46116 4.9309 8.6728 12.0118 15.2601
ν3 = 5.43931 7.0750 11.1254 14.5925 17.9282

(b)(a)

Figure 5. Dependences Dγ on the parameter kc for γ = 91◦ and kr0 = 0.5; (a) kc1 = 1; (b) kc1 = 3.
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the far field on the radius of the hole. We plot the curves for different positions of the dipole and different
resonant modes excited in the sphere-conical volume (see Fig. 4). As follows from the comparison of the
curves in Figs. 4(a), (b) the parameter kr0 significantly influences the radiation intensity in the area of
the main maximum.

Next, we analyze the TM -wave radiation through the circular hole in the hemispherical resonator.
We obtain the open hemispherical resonator (see Fig. 1(b)) from the sphere-conical one (see Fig. 1(a)),
if γ → 90◦. For further analysis we model the hemispherical resonator using the sphere-conical one with
γ = 91◦.

In Fig. 5(a), we observe the dependence Dγ on kc radiated through the hole in hemispherical
resonator when kc1 = 1. Sharp peaks in this figure correspond to the resonant values kc ≈ kcν1j

(j = 1 ÷ 5) for TMν10j-waves of the closed hemispherical resonator (see Table 2). As follows from
this figure, the resonant modes for higher indices νp (p > 1), which are excited in the hemispherical
resonator, do not radiate effectively through the small hole.

We also observe here that the growth of the parameter kc1 (see Fig. 5(b); kc1 = 3) leads to the
slight oscillations with sharp peaks of the value |Hϕ|. We observe maxima of these oscillations for kc
that are shifted from the resonant values kcν1j of the closed resonator. This behavior is similar to
the one we observe in the previous case. The sharp peaks in Fig. 5(b) correspond to the radiation
through the hole of the resonant TMν20j-waves with kc ≈ kcν2j (j = 1, 2 . . ., see Table 2). As opposed
to the sphere-conical resonator, here the radiation of the resonant modes TMν20j through the hole is
effective in whole observed diapason. Moreover, the radiation effectiveness of these modes increases
with increasing of the mode index j.

Figure 6 shows the dependence of Dγ on the parameter kc1 for different modes that are radiated
from hemispherical cavity. We see that at certain dimensionless radius b0 = kc1 sin γ of the circular
hole a significant increase of radiation for the selected resonant mode takes place. This radius depends
on geometrical parameters kc and γ. We obtain b0 ≈ 1.0 and b0 ≈ 3.0 for TMν10j and TMν20j-modes
respectively, if γ = 91◦. In the case of γ = 50◦ (see Fig. 4) we obtain b0 ≈ 0.77 and b0 ≈ 3.45 for
TMν10j- and TMν20j-modes.

Next, we investigate the influence of the parameter kc1 on the near field of the sphere-conical
cavity. In Fig. 7, we observe |Hϕ(θ)| distribution which is plotted on the virtual spherical surface with
the radius r < c1. We compare the curves in Fig. 7(a). As follows from this comparison, |Hϕ(θ)|
decreases extremely, if the parameter kc1 is slightly shifted from the resonant value (see Fig. 6(a)). The
maximum of the field concentrates at 30◦ < θ < 100◦, that is under the spherical cap of the cavity
(see curves 1-3 in this figure). We also see the extreme decay of the field in the area lower the plane
(θ > 90◦). Fig. 7(b) shows the near field behavior for higher resonant modes excited in the cavity (see
Fig. 6(b)).

To verify the calculations, we test the satisfaction of the mode-matching conditions on the virtual
spherical segment with the angle area 90◦ < θ < 180◦ and for different means of the radius r = c1. The
corresponding data are shown in Fig. 7(b) (the comparison of curves 1 and 2, as well as 3 and 4). The
behavior of these curves shows good agreement of the field’s magnitude for all observation angles θ.

(a) (b)

Figure 6. Dγ as a function of kc1 for γ = 91◦ and kr0 = 0.5; kc corresponds to: (a) TMν10j —
resonance mode; (b) TMν20j — resonance mode.
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(a) (b)

Figure 7. Near field distribution for γ = 91◦: (a) TMν102-mode; (b) TMν202-mode.

8. CONCLUSIONS

The mode matching technique and the analytical regularisation procedure are developed for the solution
of the canonical diffraction problem of axially symmetric excitation of sphere-conical cavity formed by
the truncated semi-infinite cone and a spherical cap. With these techniques the diffraction problem is
reduced to the ISLAE of the second kind, and the solution of which satisfies all the necessary conditions.
The explicit solution of the ISLAE is obtained for the small hole of the cavity. Based on this solution
the complex value of perturbation of the real resonant frequency of the closed sphere-conical volume
caused by the small hole is determined. The transition to the hemispherical cavity is also obtained.

Numerical solution is used for examination of the radiation characteristics of two open sphere-
conical cavities: the narrow cavity (γ < π/2) and the hemispherical one (γ → π/2). We have analyzed
the radiation of the TM -waves from the open end when the cavity is excited by the frequencies
determined for closed sphere-conical resonator with the same parameters γ and c. The dimensionless
truncated radiuseskc1 that allow for the effective radiation of different resonant modes through the hole
are found. The dependencies of near and far fields on geometrical parameters of the sphere-conical
cavity are investigated.

APPENDIX A.

Taking into account the representation of the kernel functions in Eqs. (31), (32), we show the formulas
for effective calculation of the elements of matrix operator in Eq. (30) as:

M ′
−(zn) = − π

(z2
n − 1/4)[Pzn−1/2(cos γ)]2M+(zn)

;

{
[M−(ξp)]−1

}′ = M+(ξp)
(ξ2p − 1/4)
cos(πξp)

{
Pξp−1/2(− cos γ) ∂

∂ξPξp−1/2(cos γ), ξp = νp,

Pξp−1/2(cos γ) ∂
∂ξPξp−1/2(− cos γ), ξp = μp.

APPENDIX B.

Formulas for effective calculation of the elements of matrix operator in Eq. (30) for γ = π/2 look as:

M ′
−(zn) = i

(π/2)3/2Γ(n)
Γ(n+ 1/2)

, zn = 2n + 1/2,

{
[M−(ξp)]−1

}′ = i
(π/2)1/2(p− 1/2)Γ(p)

Γ(p+ 1/2)
, ξp = 2p− 1/2.
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APPENDIX C.

Equation (44) leads to the correlation as:

x(1)
n τkp = x

(1)
k τnp. (C1)

Here k, n = 1, 2, 3, . . .; sub-index p determines νp for the transcendental Equation (43).
Taking into account the definition in Eq. (40)

yp =
∞∑

n=1

x
(1)
n

ξp + zn
,

it follows from Eq. (C1) that

yp =
x

(1)
k

τkp

∞∑
n=1

τnp

ξp + zn
. (C2)

Correlations in Eqs. (C2) and (44) lead to the solution as:

x
(1)
k =

τkpf
(1)
p

1 + κξp(ρ1, ρc)b(ξp)
, (C3)

where

b(ξp) =
∞∑

n=1

τnp

ξp + zn
. (C4)

Let us introduce a contour integral

Jp =
1

2πi

∫
CR

1
(ξp + t)(t− ξp)M−(t)

dt, (C5)

where the circle CR with radius |t| = R envelopes the simple poles of the integrand at t = zn
(n = 1, 2, 3 . . .) and t = −ξp. The integrand in Eq. (C5) decays as t−3/2, if R → ∞. Next, using
the residual theorem, it is found that

b(ξp) =
1

2ξp[M−1
− (ξp)]′M+(ξp)

. (C6)

The expressions (C3) and (C6) give the approximate solution of the diffraction problem in the form of
Eq. (45).
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