Vol. 158
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2017-04-19
An Efficient Numerical Contour Deformation Method for Calculating Electromagnetic Scattered Fields from 3-d Convex Scatterers
By
Progress In Electromagnetics Research, Vol. 158, 109-119, 2017
Abstract
We consider the accuracy improvement of the high frequency scattered fields from 3-D convex scatterers. The Fock currents from the convex scatterers are carefully studied. Furthermore, we propose the numerical contour deformation method to calculate the Fock currents with frequency independent workload and error controllable accuracy. Then, by adopting the Fock currents and the incremental length diffraction coefficient (ILDC) technique, the scattered fields are clearly formulated. Compared to physical optics (PO) scattered fields from 3-D convex sphere, numerical results demonstrate significant accuracy enhancement of the scattered field via the Fock current approach.
Citation
Yu Mao Wu, Weng Cho Chew, Ya-Qiu Jin, Tie-Jun Cui, and Li Jun Jiang, "An Efficient Numerical Contour Deformation Method for Calculating Electromagnetic Scattered Fields from 3-d Convex Scatterers," Progress In Electromagnetics Research, Vol. 158, 109-119, 2017.
doi:10.2528/PIER16112801
References

1. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

2. Ling, H., R. C. Chou, and S. W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Trans. Antennas Propag., Vol. 37, No. 2, 194-205, 1989.
doi:10.1109/8.18706

3. Tiberio, R., A. Toccafondi, A. Polemi, and S. Maci, "Incremental theory of diffraction: A newimproved formulation," IEEE Trans. Antennas Propag., Vol. 52, No. 9, 2234-2243, Mar. 2004.
doi:10.1109/TAP.2004.834142

4. Rubinowicz, A., "Darstellung der sommerfeldschen beugungswelle in einer gestalt, die Beitrage der einzelnen elemente der beugende kante zur gesamten beugungswelle erkennen last," Acta Phisica Polonica A, Vol. 28, No. 6, 841-860, 1965.

5. Canta, S., D. Erricolo, and A. Toccafondi, "Incremental fringe formulation for a complex source point beam expansion," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1553-1561, May 2011.
doi:10.1109/TAP.2011.2122291

6. Mitzner, K. M., "Incremental length diffraction coefficients,", Northrop Corp, Aircraft Div., Tech Rep. AFAL-TR-73-296, 1974.

7. Hansen, T. B. and R. A. Shore, "“Incremental lenght diffraction coefficient for the shadow boundary of a general cylinder,", Rome Laboratory, Air Force Material Command, Tech. Rep. RL-TR-97-151, 1997.

8. Breinbjerg, O., "Higher order equivalent edge currents for fringe wave radar scattering by perfectly conducting polygonal plates," IEEE Trans. Antennas Propag., Vol. 40, No. 12, 1543-1554, Dec. 1992.
doi:10.1109/8.204745

9. Fock, V. A., "The distributions of currents induced by a plane wave on the surface of a conductor," J. Phys., Vol. 10, 130-136, 1946.

10. Shore, R. A. and A. D. Yaghjian, "Incremental diffraction coefficients for planar surfaces," IEEE Trans. Antennas Propag., Vol. 36, No. 1, 55-70, Jan. 1988.
doi:10.1109/8.1075

11. Michaeli, A., "Elimination of infinities in equivalent edge currents, Part I: Fringe current components," IEEE Trans. Antennas Propag., Vol. 34, 912-918, Jul. 1986.

12. Michaeli, A., "Elimination of infinities in equivalent edge currents, Part II: Physical optics components," IEEE Trans. Antennas Propag., Vol. 34, No. 8, 1986.
doi:10.1109/TAP.1986.1143913

13. Hansen, T. B. and R. A. Shore "Incremental length diffraction coefficients for the shadow boundary of a convex cylinder," IEEE Trans. Antennas Propag., Vol. 46, No. 10, 1458-1466, Oct. 1998.
doi:10.1109/8.725277

14. Yaghjian, A. D., R. A. Shore, and M. B. Woodworth, "Shadow boundary incremental length diffraction coefficients for perfectly conducting smooth, convex surfaces," Radio Sci., Vol. 31, No. 6, 1681-1695, Dec. 1996.
doi:10.1029/96RS02276

15. Sandstrom, S. K., "A remark on the computation of Fock functions for negative arguments," Int. J. Electron. Commun. (AEU), Vol. 62, No. 4, 324-326, Apr. 2008.
doi:10.1016/j.aeue.2007.08.001

16. Wu, T. T., "High-frequency scattering," Phys. Rev., Vol. 104, No. 5, 1201-1212, 1956.
doi:10.1103/PhysRev.104.1201

17. Honl, H., A. W. Maue, and K. Westpfahl, Theory of Diffraction, Springer, 1961.

18. Wu, Y. M., L. J. Jiang, and W. C. Chew, "An efficient method for computing highly oscillatory physical optics integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
doi:10.2528/PIER12022308

19. Wu, Y. M., L. J. Jiang, W. E. I. Sha, and W. C. Chew, "The numerical steepest descent path method for calculating physical optics integrals on smooth conducting surfaces," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4183-4193, Aug. 2013.
doi:10.1109/TAP.2013.2259788

20. Wu, Y. M., L. J. Jiang, W. C. Chew, and Y. Q. Jin, "The contour deformation method for calculating the high ffrequency scattered field by the Fock current on the surface of the 3-D convex cylinder," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2180-2190, May 2015.
doi:10.1109/TAP.2015.2407411

21. Shore, R. A. and A. D. Yaghjian, "Shadow boundary incremental length diffraction coefficients applied to scattering from 3D bodies," IEEE Trans. Antennas Propag., Vol. 49, No. 2, 200-210, Feb. 2001.
doi:10.1109/8.914277

22. Wu, Y. M. and W. C. Chew, "The modern high frequency techniques for solving electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 156, 63-82, 2016.
doi:10.2528/PIER15110208

23. Wu, Y. M. and S. J. Teng, "Frequency-independent approach to calculate physical optics radiations with the quadratic concave phase variations," J. Comput. Phys., Vol. 324, 44-61, 2016.
doi:10.1016/j.jcp.2016.07.029