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An Efficient Numerical Contour Deformation Method for Calculating
Electromagnetic Scattered Fields from 3-D Convex Scatterers

Yu Mao Wu1, Weng Cho Chew2, *, Ya-Qiu Jin1, Tie Jun Cui3, and Li Jun Jiang4

Abstract—We consider the accuracy improvement of the high frequency scattered fields from 3-D
convex scatterers. The Fock currents from the convex scatterers are carefully studied. Furthermore,
we propose the numerical contour deformation method to calculate the Fock currents with frequency
independent workload and error controllable accuracy. Then, by adopting the Fock currents and
the incremental length diffraction coefficient (ILDC) technique, the scattered fields are clearly
formulated. Compared to physical optics (PO) scattered fields from 3-D convex sphere, numerical results
demonstrate significant accuracy enhancement of the scattered field via the Fock current approach.

1. INTRODUCTION

In computational electromagnetics (CEM) community, the efficient algorithm for calculating the
scattered field from electrically large scatterer remains as an important and challenging problem [1].
With respect to the wave physics, the high frequency scattered fields from the electrically large convex
scatterers follow the ray physics. For the electromagnetic wave impinging on the convex scatterer, the
surface diffracted ray fields occur at the shadow boundary lines of the curved surfaces. Then, at the
grazing incident angles, the diffracted ray fields may appear at the shadow boundary lines over the
convex surfaces. In the shadow region, due to the diffraction rays at the shadow boundary lines, the
creeping ray fields occur. Furthermore, for the calculation of the scattered fields, the creeping wave
fields have the non-ignorable contributions [3–7, 11, 12, 17].

The high frequency methods could be classified as the current based methods and ray field based
methods. With the aid of the ray physics theory, the geometrical ray-tracing technique method was
developed, like the shooting and bouncing ray method (SBR) [2]. The typical current based method
is the PO method. However, due to the inaccurate approximation of the PO current around the
transition region and in the shadow region of the scatterer, the scattered fields loose accuracy with the
observation point located in these regions. To improve the accuracy of the scattered field, researchers
proposed the incremental diffraction techniques, for instance, the physical theory of diffraction (PTD),
the ILDC [6, 7, 10–14] and the incremental theory of diffraction (ITD) [3–5]. Based on the incremental
theory of diffraction localization process for the canonical problems, the incremental field contributions
are presented by a general procedure in [3]. The fringe incremental diffraction techniques may improve
the accuracy of the PO scattered problems from the perfectly conducting canonical wedge. The ILDC
technique corresponds to the differential field generated by the linear radiation integral of non-uniform
strips current, for instance, the Fock and Fringe currents for the convex and wedge scatterers [3, 6, 13],
respectively. The incremental length diffraction fields are deduced from the local canonical problems
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with the 2-D uniform cylindrical configuration by the ILDC technique. In particular, when the difference
between the exact current and the PO current (named as the non-uniform (NU) current) is well
approximated, the accuracy of the PO scattered field could be significantly improved by the ILDC
technique. Hence, the ILDC technique offers an efficient way to enhance the accuracy of scattered fields
from the 3-D convex scatterer.

Compared to the work in [21], the three main advances in this work are, first, the hybridization of
the numerical contour deformation method and the high frequency asymptotic method was developed
to calculate the Fock current efficiently. In this situation, the computational effort for the Fock current
could be achieved in the frequency independent manner. Second, the ILDC technique together with
the numerical contour deformation method was adopted to fast calculate the scattered fields from the
3-D convex sphere. Third, the Fock current from the 3-D convex sphere in the spherical coordinate
system was clearly given. The high frequency wave physics from the convex scatterer, including the
creeping wave fields, the shadow boundary, and the Fock current are clearly captured by the numerical
contour deformation method. The paper is organized as follows. In Section 2, we introduce the ILDC
formulation. In Section 3, the Fock current from the PEC sphere is carefully studied. In Section 4, the
high frequency scattered fields are clearly given via the Fock current. Sections 5–6 present the efficient
numerical contour deformation technique to evaluate the Fock current, and the numerical results of the
scattered fields from the convex perfect electric conductor sphere. We make the conclusion in Section 7.

2. ILDC TECHNIQUE FOR THE 3-D CONVEX SCATTERERS

2.1. ILDC Technique for the Convex Cylinder

To elegantly present the ILDC technique, we start with the 3-D convex cylinder as shown in Figure 1.
We assume that the integration surface from the cylinder is expressed by S(x, y, z). Furthermore, the
projection of S(x, y, z) on the x-y plane is denoted as C(x, y), that is, the cross section of the 3-D convex
cylinder. Along the z-axis, the 3-D convex cylinder is bounded by an finite integration domain [za, zb].
By performing the integration of the free space dyadic Green’s function and the uniform Fock current

Figure 1. The obliquely incident plane wave with wavevector ki impinges on the convex cylinder with
finite length, the shadow boundary is shown by the blue line on the cylinder. The Fock current on the
shadow region follows the direction of the geodesic curve C(z, s) by the magenta color. In the shadow
region, the tangential direction of C(z, s) is denoted by t̂g, which forms a constant angle π − θi with z

axis. In the lit region, t̂g forms π/2 with z axis.
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over S(x, y, z), we have

E(s,q)(r) = iωμ

(
I +

∇∇
k2

)
·
∫

S
dr′

K(q)(r̂i, r′)eik|r−r′|

4π|r − r′| (1)

Here, r̂i is the unit vector of the incident wave vector ri, and r′ is the integration source points.
K(q)(r̂i, r′) represents the uniform Fock current, which will be comprehensively studied in Section 3.
The index q denotes the TE and TM cases. For notation convenience, we omit the index q in the rest
of this paper. In the far field, Equation (1) could be formulated as

E(s)(r) ≈ ikeikr

4πr
Z
(
θ̂θ̂ + φ̂φ̂

)
·
∫

S
dr′e−ikr̂·r′K

(
r̂i, r′

)
(2)

Here, Z =
√

μ
ε . θ̂ and φ̂ are the directions along θ- and φ- axes in the spherical coordinate system

{r, θ, φ}. To adopt the ILDC technique, we consider the differential formulation of S(x, y, z) with respect
to the z-axis, which is given by dS(x, y, z) = C̃(s) × dz. Here, C̃(s) is the parameterization of contour
C(x, y) on the x-y plane with the parameter s. In the illuminated region, C̃(s) is normal to the shadow
boundary, that is, C̃(s) follows the direction of the incident wavevector k̂i. In the shadow region, C̃(s)
is the geodesic curve whose tangential direction forms θi angle with the z-axis, as shown in Figure 1.
Then, the scattered fields dE(s)(r) at the observation point r away from the incremental current sheet
of length dz could be formulated as

dE(s)(r) ≈ dz
ikeikrZ

4πr

(
θ̂θ̂ + φ̂φ̂

)
·
∫

C̃(s)
dr′e−ikr̂·r′K(r̂i, r′) (3)

The shadow boundary curve is governed by

r̂i · n̂s(rs) = 0 (4)

Where n̂s(rs) is the outward unit normal vector from the point rs lying on shadow boundary of the
convex cylinder. On invoking the ILDC technique, we could see that Equation (3) represents the
incremental length scattered fields along z direction. The scattering problem from 3-D cylinder is
approximated as the summation of 2-D cylinder scattering problems in the ILDC approach. Moreover,
we could see that the Fock current in Equation (3) could be derived from a 2-D canonical cylinder
scattering problem [9, 16].

By subtracting the PO current from the Fock current, we have the non-uniform (NU) incremental
diffraction wave fields around the transition region of the scatterer as

dE(s,NU)(r) ≈ dz
ikeikr

4πr
Z
(
θ̂θ̂ + φ̂φ̂

)
·
∫

C̃(s)
dr′e−ikr̂·r′K(NU)(r̂i, r′) (5)

Here,

K(r̂i, r′) = K(PO)(r̂i, r′) + K(NU)(r̂i, r′) (6)

The term K(PO)(r̂i, r′) corresponds to the PO current in the scatterer’s lit region, and K(NU)(r̂i, r′) is
the NU-Fock current near the transition region and in the deep shadow region. Equation (5) expresses
the incremental field radiated by a strip of thickness dz from the convex cylinder surface with the
cross section curve C̃(s). The computations of the Fock current in Equation (3) or NU-Fock current
in Equation (5) with large parameters will occur when the observation point r lies far away from the
shadow boundaries of the convex scatterer.

2.2. ILDC Technique for the Convex Sphere

Next, we consider the 3-D convex sphere as shown in Figure 2(a). In order to adopt the ILDC technique
for the sphere, first, we denote that r′ forms the angle φ1 with the x0-axis, and the projection vector in
the x0-y0 plane is denoted as ρxy(φ1). Next, when we cut the 3-D convex sphere in the ρ̂xy(φ1)-z0 plane,
a 2-D circle X(ρxy(φ1), φ1, z0) with radius R is always formed. Then, by looping φ1 from 0 to 2π for
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(a) (b)

Figure 2. (a) The 3-D electrically large PEC sphere with incident plane wave. The lit and shadow
regions are demonstrated in the figure. The lit and shadow regions are separated by the shadow
boundary, denoted by the blue line. The Fock current on the shadow region follows the direction of the
geodesic curve by the red color. (b) 3-D convex cylinder in the {ρ̂xy(φ1), z0, φ̂1} coordinate system with
the plane wave kϕ1

i incident on the cylinder.

Figure 3. The ILDC technique used for the sphere, geometry of X(ρxy(φ1), z0, φ1) with radius R.

the 2-D circle X(ρxy(φ1), φ1, z0), the 3-D convex sphere is always constructed. In this manner, with the
incremental length direction along φ̂1, the 3-D sphere could be reduced to the summation of cylinders
with the cross sections X(ρxy(φ1), φ1, z0) and axes φ̂1. In Figure 2(b), we demonstrate the geometries
of these cylinders. At this point, the ILDC technique introduced in section II could be successfully
applied for the 3-D sphere. Then, we assume that the projection of r′ in Equation (5) in the ρ̂xy(φ1)-z
plane forms the angle φ′

1 with the z-axis, as shown in Figure 3. Furthermore, X(z, ρxy(φ1), φ1) could
be parameterized as C(φ1, φ

′
1), as shown in Figure 3. Hence, we could reformulate Equation (5), and

then obtain

dE(NU)(r) ≈ dφ1Z
ikeikr

4πr

(
θ̂θ̂ + φ̂φ̂

)
·
∫

C(φ1,φ′
1)

dφ′
1F

(NU)(θi, φi, φ1, φ
′
1) (7)

Here,
F(NU)(θi, φi, φ1, φ

′
1) = C ′

φ′
1
(φ1, φ

′
1)e

−ikr̂·r′K(NU)(θi, φi, φ1, φ
′
1) (8)

And r′ can be further represented as

r′ = R[sin φ′
1 cos φ1, sin φ′

1 sin φ1, cos φ′
1]

T

which expresses the source points r′ along the curve C(φ1, φ
′
1).



Progress In Electromagnetics Research, Vol. 158, 2017 113

3. THE FOCK CURRENT EXPRESSIONS

Let an orthogonal system (ĥi, v̂i, k̂i) be defined at the point r′, and

k̂i =
[
sin θi cos φi, sin θi sin φi, cos θi

]T (9)

with θi and φi denoted as the angles between k̂i and the z- and x- axes, respectively. And the unit
vectors ĥi and v̂i are the local polarization directions of Ei and Hi at the source point r′. Under
the TE-TM decomposition theorem of the plane wave in the homogeneous medium, the plane wave
illuminated on the circular cylinder in Figure 2(b) could be decomposed as

E(i) =
(
Eθi θ̂i + Eφiφ̂i

)
eikk̂i·r (10)

For the source point r′ lying in the scatterer’s lit region, the TE component of the Fock current
takes the expression

K(TE)(r′) = K(TE)(θi, φi, φ1, φ
′
1) = n̂(r′) × H(i,TE)(r′)GTE

((
kR

2

) 1
3

n̂(r′) · k̂i

)
(11)

Here, n̂(r′) is the outward normal vector of the considered scatterer at r′. Where GTE(x) is the Fock
function with the formulation

GTE(x) = eix3/3g(x) (12)

g(x) = −eiπ/6

2π

∫
Γ

eixt

Ai′(tei2π/3)
dt (13)

The term Ai(x) in Equation (13) expresses the Airy function with the Stokes’ phenomenon on the
complex plane, and Γ = Γ(t) is the integration path demonstrated in Figure 4. Furthermore, Γ(t)
represents the contour on the complex plane that follows the path starting from −∞ in the angular
domain 1

3π < arg(t) < π, passing through the origin and ending at ∞ in the angular domain
− 1

3π < arg(t) < 1
3π . Here, t is a complex path parameter in Figure 5 which could be parameterized as

t = t(s), with s as a real parameter.

Figure 4. The integration paths Γl and Γs adopted in the calculation of the Fock function g(x), with
the observation point r lying in the lit and shadow regions of the scatterer, respectively. Here, S∗ = −x2

is the saddle point.

After some mathematical derivations [20], the Fock current in Equation (11) could be re-formulated
as

K(TE)
(
θi, φi, φ1, φ

′
1

)
= Y0

(− cos φ′
1x̂ + sin φ′

1 cos φ1ẑ
)
eik cos φ′

1GTE

((
kR

2

) 1
3

cos φ′
1

)
, φ′

1 ∈ [π/2, π]

(14)
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Figure 5. (a), (b) Real and imaginary components of the integrand in the Fock function g(x) after
adopting the contour deformation path Γl, respectively. Here, the observation point lies in the lit region
of the scatterer, and the parameter x takes the value x = −1.0074. The abscissas in Figure 5 denote the
real s parameter, which could be obtained by the parameterization process t = t(s) along the contour
path Γl.

Here, we shall note that the parameter (kR
2 )

1
3 cos φ′

1 in Equation (14) is negative with the source point
r′ lying in the lit region of the scatterer.

For the source point r′ lying in the shadow region of the scatterer, K(TE)(r′) takes the expression

K(TE)(r′) = Y0n̂s(rs) ·E(i,TE)(rs)eiksg(r′)g(xg)
(

ρ(rs)
ρg(r′)

) 1
6

t̂g (15)

Here, rs is the point lying along the shadow boundary. And t̂g in Equation (15) is the tangential
direction of the geodesic curve as shown in Figure 2(b), which may be torsional. After some math
derivations [20], K(TE)(r′) in Equation (15) could be expressed as

K(TE)
(
θi, φi, φ1, φ

′
1

)
= −φ̂′

1 sin φ′
1 cos φ1e

ikR|π
2
−φ′

1|g
((

kR

2

) 1
3
∣∣∣π
2
− φ′

1

∣∣∣) , φ′
1 ∈

[
0,

π

2

]
(16)

Equation (16) above is the expression of the Fock current in the shadow region of the 3-D convex sphere.
Similar argument holds for the TM case. In particular, the TM case Fock function GTM (x) is defined
by [13, 20]:

GTM (x) = eix3/3f(x) (17)

f(x) =
e−iπ/6

2π

∫
Γ

eixt

Ai(tei2π/3)
dt (18)

4. HIGH FREQUENCY SCATTERED FIELDS

After obtaining the Fock current from the 3-D convex sphere, we study the high frequency scattered
fields. E(s)(r) in Equation (2) could be reformulated as

E(s)(r) = Z
ikR2eikr

4πr

(
θ̂θ̂ + φ̂φ̂

)
·
∫ 2π

0
dφ1

∫ π

0
dφ′

1F1

(
θi, φi, φ1, φ

′
1

)
(19)
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Here,
F1

(
θi, φi, φ1, φ

′
1

)
= sin φ′

1e
−ikr̂·r′K

(
θi, φi, φ1, φ

′
1

)
(20)

Equation (19) represents the scattered fields resulting from the Fock current on the 3-D convex sphere
scatterer.

After substituting Equation (14) or (16) into Equation (19), we obtain

r̂ · r = P
(
θ, φ, φ1, φ

′
1

)
= R sin θ sin φ′

1 cos(φ − φ1) + R cos θ cos φ′
1 (21)

Finally, E(s)(r) in Equation (19) could be arrived at

E(s)(r) =
ikR2eikr

4πr

∫ 2π

0
dφ1

∫ π

π
2

dφ′
1K1

(
θ, φ, φ1, φ

′
1

)
︸ ︷︷ ︸

Contribution of the PO field and the NU-diffracted field in the lit region

+
ikR2eikr

4πr

∫ 2π

0
dφ1

∫ π
2

0
dφ′

1K2

(
θ, φ, φ1, φ

′
1

)
︸ ︷︷ ︸

Contribution of the NU-diffracted field around the shadow boundary and in the deep shadow region

(22)

Here,

K1

(
θ, φ, φ1, φ

′
1

)
= V1(θ, φ, φ1, φ

′
1) sin φ′

1e
ik(cos φ′

1−P (θ,φ,φ1,φ′
1))G

((
kR

2

) 1
3

cos φ′
1

)
(23)

and V1(θ, φ, φ1, φ
′
1) takes the expression

V1(θ, φ, φ1, φ
′
1) =

(
sinφ cos φ′

1

)
φ̂ +

(− cos θ cos φ cos φ′
1 − sin θ cos φ1 sinφ′

1

)
θ̂ (24)

Furthermore, K2 (θ, φ, φ1, φ
′
1) has the formulation

K2

(
θ, φ, φ1, φ

′
1

)
= V2(θ, φ, φ1, φ

′
1)e

−ikP (θ,φ,φ1,φ′
1)eikR|π

2
−φ′

1|g
((

kR

2

) 1
3
∣∣∣π
2
− φ′

1

∣∣∣) (25)

and V2(θ, φ, φ1, φ
′
1) is

V2(θ, φ, φ1, φ
′
1) = (cos θ sinφ sin φ1 cos φ′

1 + sin θ sin φ′
1 + cos θ cos φ cos φ1 cos φ′

1)θ̂

+ cos φ′
1 (− sin φ cos φ1 + cos φ sin φ1) φ̂ (26)

At this point, the electric scattered fields from the Fock currents on the 3-D convex sphere by the
ILDC technique are formulated, with the expression given in Equation (22). It contains two terms,
the first term corresponds to the PO scattered field and the NU-diffracted field in the scatterer’s
lit region. The second term corresponds to the NU-diffracted field in the shadow region around the
shadow boundary and the creeping wave fields in the deep shadow region. In the conventional ILDC
technique [8, 12, 13], the contributions by the radiation integrals from the PO and NU currents are
not separated. The PO contribution is expressed as a line integral along the shadow boundaries.
Furthermore, the local ILDC coefficients are obtained by the asymptotic approximation of the line
integrals from the NU currents.

5. THE EFFICIENT NUMERICAL CONTOUR DEFORMATION TECHNIQUE FOR
CALCULATING THE FOCK CURRENT

In the lit and shadow regions of the considered convex scatterers, the Fock currents in Equation (14)
or (16) have the highly oscillatory integrands, which are demonstrated in [20, 22, 23]. To efficiently
evaluate the Fock currents, we propose the numerical contour deformation technique [20]. The idea is
similar to our recent proposed numerical steepest descent path method (NSDP) for evaluating the PO
scattered fields [18, 19].

For the observation points r lying in the shadow region with

k̂i · n̂ > 0 (27)
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we propose the contour path Γs to calculate g(x) [15]. Here, Γs(t) is the integration path that starts
from −∞, and forms the angle arg(t) = 2π

3 with the Re(t) axis with Re(t) ≤ 0. While for the case
Re(t) > 0, Γs(t) follows the path with arg(t) = 0 [15]. However, for r lying in the lit region with

k̂i · n̂ < 0 (28)

we adopt the contour Γl in Figure 4. The saddle point S∗ corresponds to the point where the derivative
of the phase function with respect to the t variable in the integrand in Equation (13) equals to zero. To
obtain the saddle point, the derivative of the Airy function is replaced with its asymptotics:

Ai′(t) ∼ − t
1
4

2
√

π
e−

2
3
t
3
2 , |arg(t)| < π (29)

Here, the asymptotic formulations hold with the parameter |t| → ∞ in Equation (29). Then, after
substituting Equation (29) into Equation (13), the phase function in the kernel of g(x) in Equation (13)
is

p(x, t) = ixt − 2
3
t

3
2 (30)

On performing ∂p(x,t)
∂t = 0, we obtain

ix − t1/2 = 0 (31)

Hence, from Equation (31), t = S∗ = −x2 denotes the saddle point in Figure 4. With the case
Re(t) ≤ Re(tc), Γl(t) is the integration path that starts from −∞, and forms arg(t) = 2π

3 with the Re(t)
axis. While with the case Re(t) > Re(tc), to avoid the saddle point S∗ at the real Re(t) axis, Γl(t)
leaves the real axis with a small perturbation parameter ε = 10−3 in our code. In detail, for the contour
Γs, t(s) is defined as t(s) = e(i2π/3)s for s ∈ (−∞, 0], and t(s) = s for s ∈ [0,∞), respectively. For
the contour Γl, t(s) is defined as t(s) = e(i2π/3)s + tc for s ∈ (−∞, 0], and t(s) = s + tc for s ∈ [0,∞),
respectively. Here, in Figure 4, we adopt the contour with small perturbation parameter, which is
similar as the Sommerfeld integration contour path of the Green’s function.

5.1. Calculation of the Fock Function with the Gauss-Legendre Quadrature Rule

In the following numerical example, the observation point lies in the lit region of the convex scatterer,
and the parameter x takes the value x = −1.0074. The observation point lies in the lit region of the
convex cylinder with φ′

1 = 1.4304π, as shown in Figure 3. The Gauss-Legendre quadrature rule with the
number of N = 20 integration points was used. And the minimum and maximum integration step sizes
are 0.1210 and 1.556, respectively. Here, the maximal and minimal step-sizes illustrate that the Gauss-
Legendre nodes are not equidistant. By the integration of the integrated function in Equation (13), the
contour path t is parameterized as t = t(s), with s as the real parameter demonstrated in Figure 5. The
Gauss-Legendre numerical integration scheme is

g(x) ≈ −eiπ/6

2π

N∑
j=1

t′(sj)wj
eixt(sj)

Ai′(t(sj)ei2π/3)
(32)

where sj are the j-th integration points, wj are the weights adopted in the Gauss-Legendre numerical
scheme, j = 1, 2, . . . , N . As is seen from Figure 5, both real and imaginary components of the integrated
function function g(x) become smooth ones after being defined along the complex contour deformation
path Γl. Due to the fast decay behavior of the kernel of the Fock function, we could truncate the infinite
contours to finite path intervals on the complex plane in the numerical integration process.

In detail, for evaluating the integrated function g(x), we numerically truncate the integration
contour Γl(t) at the point t∗, where the amplitude of the kernel takes on the value less than a tolerance
value v∗, i.e., Kernel(g(Γl(t∗))) ≤ v∗. Here, we set v∗ = 10−5 in our code. The reason why v∗ is so small
is that the integrand of g(x) defined on Γl(t∗) decays very fast after the contour deformation technique.
In this manner, we truncate the infinite integration contour paths Γl and Γs to finite paths. Then,
for finite integration intervals, we adopt the Gauss-Legendre quadrature rule to integrate g(x) function
with frequency independent workload and error controllable accuracy.
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6. NUMERICAL EXAMPLES

In the following, we demonstrate the application of the ILDC technique to the 3-D convex scatterer.
We consider the incident plane wave impinging from the positive z-direction, as shown in Figure 2(b).
For the plane incident wave that is x-polarized, we study the scattered fields via the Fock current from
the convex cylinder as shown in Figure 2(b).

In Figure 6, we consider the bistatic RCS values with cases kR = 25 and kR = 30, respectively. The
sampling angle point at which the RCS is Mj = jπ/180, j = 0, 1, . . . , 180. The results of the scattered
fields from the Fock current, the PO current and the Mie series methods are clearly demonstrated. As
is shown in Figure 6, the scattered fields from the Fock current agree well with those generated by
the Mie series method. Furthermore, one could observe that the scattered fields from the Fock current
significantly improve the accuracy of the PO scattered fields. The reason is that the Fock current from
the convex scatterer contains not only the PO current but also the NU-Fock current in the transition
region and in the deep shadow region, which could agree well with the exact electric current from the
convex scatterers. In Figure 6(b), compared to the RCS results via the MIE series method, the relative
errors of the RCS values over all the sampling points by the Fock and PO methods are 0.088 and 0.3577,
respectively. Hence, compared to the PO method, the accuracy of the scattered fields results could be
significantly improved by the Fock current and the ILDC technique.
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Figure 6. The far scattered fields from the 3-D conducting sphere are generated by the PO
approximation current, the uniform Fock current in the scatterer’s lit and shadow regions and the
Mie series method, respectively. Here, the products of the wave frequencies and the radius of the sphere
have the values (a) kR = 25, and (b) kR = 30, respectively.

To demonstrate the effect of the NU-Fock current in the shadow region, in Figure 7, we show the
contributions of the creeping wave fields from the NU-Fock current in the shadow region. As is seen
from Figure 7, the creeping wave fields become strong in the forward scattering direction, while they
become weak in the backward direction. In summary, on invoking the ILDC technique for the 3-D
convex scatterer, the scattered fields from the Fock currents gain high accuracy and could even agree
well with the Mie series solution. The extension of the Fock currents to arbitrary 3-D convex scatterers
will be considered in the future.
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Figure 7. Comparison of the contributions of the PO scattered fields and the wave fields from the
NU-Fock current in the shadow region of the sphere, with kR = 45.

7. CONCLUSIONS

The numerical contour deformation method is developed to efficiently evaluate the Fock currents.
Furthermore, on invoking the ILDC technique, the high frequency scattered fields are elegantly
formulated via the Fock currents. Numerical results for the 3-D convex PEC spheres demonstrate
that the scattered fields via the Fock currents greatly enhance the accuracy from those produced by the
PO currents.
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