Vol. 54
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-13
Hybrid FDTD/FETD Technique Using Parametric Quadratic Programming for Nonlinear Maxwell's Equations
By
Progress In Electromagnetics Research M, Vol. 54, 113-123, 2017
Abstract
A nonlinear hybrid FDTD/FETD technique based on the parametric quadratic programming method is developed for Maxwell's equations with nonlinear media. The proposed technique allows nonconforming meshes between nonlinear FETD and linear FDTD subdomains. The coarse structured cells of FDTD are used in relatively simple structures with linear media, whereas fine unstructured elements of FETD based on the parametric quadratic programming method are used to simulate complicated structures with nonlinear media. This hybrid technique is particularly suitable for structures with small nonlinear regions in an otherwise linear medium. Numerical results demonstrate the validity of the proposed method.
Citation
Hongxia Li, Bao Zhu, and Jiefu Chen, "Hybrid FDTD/FETD Technique Using Parametric Quadratic Programming for Nonlinear Maxwell's Equations," Progress In Electromagnetics Research M, Vol. 54, 113-123, 2017.
doi:10.2528/PIERM16112207
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

2. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 1995.

3. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC, 1993.

4. Joseph, R. M. and A. Taflove, "Spatial soliton deflection mechanism indicated by FDTD Maxwell's equations modeling," IEEE Photonics Technology Letters, Vol. 6, 1251-1254, 1994.
doi:10.1109/68.329654

5. Van, V. and S. K. Chaudhuri, "A hybrid implicit-explicit FDTD scheme for nonlinear optical waveguide modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 540-545, 1999.
doi:10.1109/22.763152

6. Joseph, R. M. and A. Taflove, "FDTD Maxwell's equations models for nonlinear electrodynamics and optics," IEEE Transactions on Antennas and Propagation, Vol. 45, 364-374, 1997.
doi:10.1109/8.558652

7. Ziolkowski, R., "Full-wave vector Maxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear kerr medium exhibiting a finite response time," Journal of the Optical Society of America B, Vol. 10, 186-198, 1993.
doi:10.1364/JOSAB.10.000186

8. Fisher, A., D. White, and G. Rodrigue, "An efficient vector finite element method for nonlinear electromagnetic modeling," Journal of Computational Physics, Vol. 225, 1331-1346, 2007.
doi:10.1016/j.jcp.2007.01.031

9. Chen, J., Q. H. Liu, M. Chai, and J. A. Mix, "A nonspurious 3-D vector discontinuous Galerkin finite-element time-domain method," IEEE Microwave and Wireless Components Letters, Vol. 20, 1-3, 2010.
doi:10.1109/LMWC.2009.2035941

10. Zhu, B., J. Chen, W. Zhong, and Q. H. Liu, "A hybrid FETD-FDTD method with nonconforming meshes," Communications in Computational Physics, Vol. 9, 828-842, 2011.
doi:10.4208/cicp.230909.140410s

11. Tobon, L. E., Q. Ren, Q. T. Sun, J. Chen, and Q. H. Liu, "New efficient implicit time integration method for DGTD applied to sequential multidomain and multiscale problems," Progress In Electromagnetics Research, Vol. 151, 1-8, 2015.
doi:10.2528/PIER14112201

12. Zhu, B., H. Yang, and J. Chen, "A novel finite element time domain method for nonlinear Maxwell's equations based on the parametric quadratic programming method," Microwave and Optical Technology Letters, Vol. 57, 1640-1645, 2015.
doi:10.1002/mop.29170

13. Cottle, R. W. and G. B. Dantzig, "Complementary pivot theory of mathematical programming," Linear Algebra Applications, Vol. 1, 103-125, 1982.
doi:10.1016/0024-3795(68)90052-9

14. Ferris, M. C. and J. S. Pang, "Engineering and economic applications of complementarity problems," SIAM Review, Vol. 39, 669-713, 1997.
doi:10.1137/S0036144595285963

15. Zhang, H. W., S. Y. He, and X. S. Li, "Two aggregate-function-based algorithms for analysis of 3D frictional contact by linear complementarity problem formulation," Computer Methods in Applied Mechanics and Engineering, Vol. 194, 5139-5158, 2005.
doi:10.1016/j.cma.2005.01.002

16. Fischer, A., "A special Newton-type optimization method," Optimization, Vol. 24, 269-284, 1992.
doi:10.1080/02331939208843795

17. Lu, T., P. Zhang, and W. Cai, "Discontinuous Galerkin methods for dispersive and lossy Maxwell equations and PML boundary conditions," Journal of Computational Physics, Vol. 200, 549-580, 2004.
doi:10.1016/j.jcp.2004.02.022

18. Lu, T., W. Cai, and P. Zhang, "Discontinuous Galerkin time-domain method for GPR simulation in dispersive media," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, 72-80, 2005.
doi:10.1109/TGRS.2004.838350

19. Mohammadian, A. H., V. Shankar, and W. F. Hall, "Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure," Computer Physics Communications, Vol. 68, 175-196, 1991.
doi:10.1016/0010-4655(91)90199-U

20. Zhu, B., J. Chen, W. Zhong, and Q. H. Liu, "A hybrid finite-element/finite-difference method with an implicit-explicit time-stepping scheme for Maxwell's equations," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 25, 495-506, 2012.
doi:10.1002/jnm.1853

21. Luo, M. and Q. H. Liu, "Spectral element method for band structures of three-dimensional anisotropic photonic crystals," Physical Review E, Vol. 80, 1-7, 2009.

22. Fan, G. and Q. H. Liu, "A strongly well-posed PML in lossy media," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 97-100, 2003.
doi:10.1109/LAWP.2003.814776