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Hybrid FDTD/FETD Technique Using Parametric Quadratic
Programming for Nonlinear Maxwell’s Equations

Hongxia Li1, Bao Zhu2 and Jiefu Chen3, *

Abstract—A nonlinear hybrid FDTD/FETD technique based on the parametric quadratic
programming method is developed for Maxwell’s equations with nonlinear media. The proposed
technique allows nonconforming meshes between nonlinear FETD and linear FDTD subdomains.
The coarser structured cells of FDTD are used in regular, large and linear media, whereas smaller
unstructured elements of FETD based on the parametric quadratic programming method are used to
simulate complicated structures with nonlinear media. This hybrid technique is particularly suitable for
structures with small nonlinear regions in an otherwise linear medium. Numerical results demonstrate
the validity of the proposed method.

1. INTRODUCTION

With growing complexity of nonlinear device structures, approximate analytical techniques become
inadequate. More accurate and efficient numerical techniques are sought. A widely used modeling
tool in this area is the finite-difference time-domain (FDTD) solution of Maxwell’s equations [1–3].
A simple application of the FDTD method based on the noniterative procedure for nonlinear media
employs an explicit time-stepping scheme [3]. This scheme places a severe stability constraint on the
time step and mesh sizes, and it introduces an artificial time lag in the medium response. To eliminate
this artificial time lag, Joseph and Taflove [4] proposed an iterative FDTD of the nonlinear Maxwell
equations. Van and Chaudhuri [5] proposed a hybrid implicit-explicit FDTD method to eliminate the
restrictive stability condition. These methods allow for full vectoral wave solutions, but “staircasing”
errors are introduced when they are applied to problems with curved geometry [6, 7]. On the other hand,
the finite-element time-domain (FETD) method allows an unstructured mesh. However, the nonlinear
FETD scheme requires updating system matrices or sparse matrix solver during every time stepping [8],
which can be quite expensive for computational cost of multi-scale problems.

In order to adopt the advantages of both methods and avoid their weaknesses, a hybrid
FDTD/FETD technique [10] has been developed for linear Maxwell’s equations, However, the hybrid
method has yet to be extended to transient electromagnetic problems with instantaneous nonlinear
media. In this paper, a nonlinear hybrid FDTD/FETD technique is proposed for solving the nonlinear
Maxwell’s equations, which allows nonconforming meshes [9, 10] between different subdomains with
linear and nonlinear media based on the domain decomposition technique [11]. The cell or element
size of the proposed method can be chosen by balancing the computational cost. Larger structured
cells are used in regular, large and linear media with explicit time integration scheme, whereas smaller
unstructured elements based on the parametric quadratic programming method [12] are used to simulate
the nonlinear media with implicit time integration scheme. This method is particularly suitable for
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structures with small nonlinear regions in an otherwise linear medium. The nonlinear FETD scheme is
not based on iteration, but on the base exchanges in the solution of a standard quadratic programming
problem, as the nonlinear constructive law is transformed into a set of linear complementary problems
(LCP) [13] with parametric variables. These LCPs can be solved by a number of mature mathematical
tools, efficiently [14–16]. This proposed scheme need not require updating system matrices and tedious
iterative procedure at every time step, so the coupling between FDTD and nonlinear FETD is easy to
be implemented based on the framework of linear case [10]. Numerical results demonstrate the validity
of the proposed method.

2. NONLINEAR HYBRID METHOD FORMULATION

2.1. Nonlinear DG-FETD Formulation

We start from the first-order Maxwell’s equations of two-dimensional TMz case ( ∂
∂z = 0) for the

nonlinear DG-FETD scheme by defining

∇t =
∂

∂x
x̂ +

∂

∂y
ŷ (1)

Ht � Hxx̂ + Hyŷ (2)

Ez = Ezẑ, Dz = Dz ẑ (3)

where superscript t denotes the transverse components.
Nonlinear Maxwell’s equations for the two-dimensional TM z case become

∂ (εnonEz)
∂t

= ∇t × Ht − Js (4)

μ
∂Ht

∂t
= −∇t × Ez − Ms (5)

with an instantaneous nonlinear permittivity εnon

εnon =

⎧⎪⎨
⎪⎩

ε0, |E| ≤ E1

ε1, E1 < |E| < E2

. . .
εN , |E| > EN

(6)

Figure 1. Linearization of the nonlinear constitutive relation.

The nonlinear constitutive relation can be linearized into several line segments by introducing the
parametric variationals λ. Take a five-segment approximation as shown in Fig. 1 as an instance, where
E−1 = −E1, E−2 = −E2, · · · , E−N = −EN , D−1 = −D1, D−2 = −D2, · · · , D−N = −DN .

Assuming that 0 < ε0 < ε1 < ε2 < · · · < εN , let

Dz = εnonEz = ε0 (Ez + λ) (7)
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where

λ1 = (Dz − D1)
(

1
ε0

− 1
ε1

)
, Dz ≥ D1 ≥ 0

· · ·
λN = (Dz − DN )

(
1

εN − 1
− 1

εN

)
, Dz ≥ DN ≥ 0

λ−1 = (Dz − D−1)
(

1
ε1

− 1
ε0

)
, Dz ≤ D−1 ≤ 0

· · ·
λ−N = (Dz − D−N )

(
1

εN
− 1

εN−1

)
, Dz ≤ D−N ≤ 0

λ = λ1 + λ2 + · · · + λN − λ−1 − λ−2 − · · · − λ−N

(8)

Then we will have
λ ≥ 0, λ1 ≥ 0, λ2 ≥ 0, · · · , λN ≥ 0
λ−1 ≥ 0, λ−2 ≥ 0, · · · , λ−N ≥ 0

(9)

We will have
fi < 0, if λi = 0; fi = 0, if λi > 0, i = −N, . . . ,−1, 1, . . . , N (10)

Define
f1 = Dz − D1 − λ1C1

· · ·
fN = Dz − DN − λNCN

f−1 = D−1 − Dz − λ−1C−1

· · ·
f−N = D−N − Dz − λ−NC−N

C−1 =
ε1ε0

ε0 − ε1
, · · · , C−N =

εNεN−1

εN−1 − εN

C1 =
ε0ε1

ε1 − ε0
, · · · , CN =

εN−1εN

εN − εN−1

(11)

The constitutive relationships can be rewritten as
f1 < 0, λ1 = 0; f1 = 0, λ1 ≥ 0
· · ·
fN < 0, λN = 0; fN = 0, λN ≥ 0
f−1 < 0, λ−1 = 0; f−1 = 0, λ−1 ≥ 0
· · ·
f−N < 0, λ−N = 0; f−N = 0, λ−N ≥ 0

(12)

Introducing slack variables vi to make above inequality become equations, the nonlinear constitutive
relations becomes

fi + vi = 0
λi ≥ 0, vi ≥ 0, λivi = 0

(13)

We can see that treating nonlinearity is essentially solving a standard linear complementary problem
(LCP) [13]. Several highly efficient computational methods [14–16] from computational mathematics
can be used to solve the final quadratic programming model. Therefore, the iterative process in each time
step is avoided in the proposed method. For a general nonlinear material, the nonlinear constitutive
relation can be linearized into arbitrary number of line segments with a corresponding number of
parameter variables, and the corresponding derivation of the equation can be referred to [12].

The corresponding parametric variationals weak forms of nonlinear Maxwell’s equations are∫
Si

ε0Ne · ∂ (Ez + λ)
∂t

ds =
∫

Si

Ne · ∇t × Htds −
∫

Si

Ne · Jsds (14)
∫

Si

μNh · ∂Ht

∂t
ds = −

∫
Si

Nh · ∇t × Ezds −
∫

Si

Nh · Msds (15)
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where Ne and Nh are test-and-basic functions for Ez and Ht, respectively, and Si denotes the area of
the i-th subdomain.

Using integration by parts and Gauss’s theorem in Equations (14) and (15), by applying some
simple identities, we obtain∫

Si

ε0Ne · ∂ (Ez + λ)
∂t

ds =
∫

Si

∇t × Ne ·Htds −
∫

Si

Ne · Js +
∫

Li

Ne · (n̂× Ht) dl (16)

∫
Si

μNh · ∂Ht

∂t
ds = −

∫
Si

∇t × Nh ·Ezds −
∫

Si

Nh · Ms −
∫

Li

Nh · (n̂× Ez) dl (17)

where n̂ is the outward unit normal of the boundary, and Li denotes the subdomain surface. The
relationship of the interface fields between subdomain i and its neighbor subdomains can be evaluated
as the two numerical fluxes n̂×Ez and n̂×Ht. As the basis functions Ne and Nh are not required to be
continuous across the interface between two adjacent subdomains, a nonconforming mesh can be used
between subdomains. The Riemann solver [17–19] is used here to calculate the above numerical fluxes.
Take the i-th subdomain as the local subdomain, and assume that it is adjacent to the j-th subdomain.
The corrected fields on the interface will be

n̂× Ez = n̂× Y iEi
z + Y iEj

z

Y i + Y j
− n̂× n̂× Hi

t − Hj
t

Y i + Y j
(18)

n̂× Ht = n̂× ZiHi
t + ZiHj

t

Zi + Zj
+ n̂× n̂× Ei

z − Ej
z

Zi + Zj
(19)

where Ei
z and Hi

t are fields from the local (i-th) subdomain; Ej
z and Hj

t are from the neighbor (j-th)
subdomain; and Z and Y are wave impedance and admittance of the medium

Zi =
1
Y i

=

√
μi

εi
, Zj =

1
Y j

=

√
μj

εj
(20)

for the i-th and j-th subdomains, respectively.
The discretized system by the nonlinear DG-FETD method for the i-th subdomain is given in

Mi
ee

dei

dt
= Ki

eee
i + Ki

ehh
i +

∑
j

Lij
eee

j +
∑

j

Lij
ehh

j − Ji − Mi
ee

dλi

dt
(21)

Mi
hh

dhi

dt
= Ki

hee
i + Ki

hhh
i +

∑
j

Lij
hee

j +
∑

j

Lij
hhh

j − Mi (22)

[
Mi

ee

]
mn

=
∫

Si

ε0Ni
em

· Ni
en

ds,
[
Mi

hh

]
mn

=
∫

Si

μNi
hm

·Ni
hn

ds (23)

[
Ki

ee

]
mn

=
∫

Li

Ni
em

· {n̂ × n̂× Ni
en
}/ (

Zi + Zj
)
dl (24)

[
Ki

hh

]
mn

=
∫

Li

Ni
hm

· {n̂ × n̂× Ni
hn
}/ (

Y i + Y j
)
dl (25)

[
Ki

eh

]
=

∫
Si

∇× Ni
em

· Ni
hn

ds +
∫

Li

Ni
em

· {n̂ × Ni
hn
}Zi/

(
Zi + Zj

)
dl (26)

[
Ki

he

]
mn

=
∫

Si

∇× Ni
hm

· Ni
en

ds +
∫

Li

Ni
hm

· {n̂ × Ni
en
}Y i/

(
Y i + Y j

)
dl (27)

[
Lij

ee

]
mn

=
∫

Li

Ni
em

· {n̂ × n̂× Nj
en
}/ (

Zi + Zj
)
dl (28)

[
Lij

hh

]
mn

=
∫

Li

Ni
hm

· {n̂ × n̂× Nj
hn
}/ (

Y i + Y j
)
dl (29)
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[
Lij

eh

]
mn

=
∫

Li

Ni
em

· {n̂ ×Nj
hn
}Zi/

(
Zi + Zj

)
dl (30)

[
Lij

he

]
mn

=
∫

Li

Ni
hm

· {n̂× Nj
en
}Y i/

(
Y i + Y j

)
dl (31)

[
Ji

]
m

=
∫

Si

Ni
em

· Jsds,
[
Mi

]
m

=
∫

Si

Ni
hm

·Msds (32)

where ei and hi are vectors of the discretized electric and magnetic fields for the i-th subdomain; the
matrices and vectors in Equations (21) and (22) have the same definitions as in [20]. As shown in
Equations (21) and (22), a large system with small nonlinear regions can be divided into several smaller
linear and nonlinear systems by this domain decomposition method. By doing this, we can solve
the multi-scale system with small nonlinear regions efficiently using nonconforming meshes between the
electrically fine and electrically coarse structures. The nonconforming meshes are used for the transition
from nonlinear FETD meshes to linear FDTD grids in the hybrid method. Theoretically, the electrically
fine structures can be divided into any number of subdomains with DGM in the proposed method. In
this nonlinear hybrid FETD/FDTD method, we adopt the conventional linear FDTD scheme with the
leap-frog scheme on a staggered Cartesian grid. The coupling between FDTD and nonlinear FETD is
in the next section.

2.2. Coupling between the Nonlinear FETD and FDTD Methods

The discretized Equations (21) and (22) for nonlinear DG-FETD can be rewritten as a first order linear
ordinary differential equation:

M
dφ

dt
− Kφ = f − Γ

dλ

dt
(33)

where

M =

⎡
⎢⎢⎣

Mi
ee 0 0 0

0 Mi
hh 0 0

0 0 Mj
ee 0

0 0 0 Mj
hh

⎤
⎥⎥⎦ , K =

⎡
⎢⎢⎢⎢⎣

Ki
ee Ki

eh Lij
ee Lij

eh

Ki
he Ki

hh Lij
he Lij

hh

Lji
ee Lji

eh Kj
ee Kj

eh

Lji
he Lji

hh Kj
he Kj

hh

⎤
⎥⎥⎥⎥⎦ (34)

λ =
[

λi λj
]T (35)

f =
[

f i f j
]T (36)

Γ =
[

Γi 0
0 Γj

]
(37)

φ =
[

ei hi ej hj
]T (38)

If the i-th subdomain does not contain nonlinear medium, Γi = 0. The Crank-Nicolson method
can be used to solve this discretized first-order equations, and the simple central finite difference is used
for the parameter vector λ. We will get a time stepping scheme as

(M− KΔt/2) φ̄n+1 − (M + KΔt/2) φ̄n =
fn+1 + fn

2
+ Γ

λn+1 − λn

dt
(39)

subject to the LCPs equations

f (e, λ) + v = 0
vT · λ = 0,v, λ ≥ 0 (40)

where φ̄n and φ̄n+1 are the values of fields φ at time steps tn and tn+1, respectively. We can see that
this proposed method finally leads to a series of standard LCP problems. Several mature algorithms
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Figure 2. Coupling between coarser grid and denser grid with nonconforming mesh. The rectangular
grid marked by dotted line is the buffer zone. The linear FDTD subdomain is on the left of the buffer,
and the nonlinear FETD subdomain is on the right. Unknowns associated with edges marked by solid
arrows, HFD, are exported from the linear FDTD grid to the nonlinear FETD mesh, and those marked
by empty arrows, HFE, are exported from the nonlinear FETD mesh back to the linear FDTD grid.
The EFD field is located at the cell center in the linear FDTD part marked by solid circle.

such as the aggregate-function smoothing algorithm can be used to solve Eq. (40) with high efficiency.
Details of this algorithm can be referred to [15] and will not be elaborated here.

The edges of the explicit FDTD grid are updated using the FDTD scheme. This provides
Equation (39) with a Dirichlet boundary condition [20]. The solution of Equation (39) is exported
to the explicit grid to complete the full cycle of one time step (see Fig. 2). This process is repeated
until the desired time window is completed.

For the example of 2-D TMz case, let us assume that En−1/2 and Hn are known in FDTD grid,
and En and Hn are known on nonlinear DG-FETD mesh, where the superscripts denote the time step
index. To advance the fields to the next time step, we use the following procedures:

1. Use the FDTD method to advance the electric field to En+1/2 with the known En−1/2 and Hn in
the FDTD grid in Fig. 2.

2. Use the FDTD method to advance the magnetic field to Hn+1 with the known Hn and En+1/2 in
the FDTD grid in Fig. 2.

3. Pass Hn+1
FD components, marked by solid arrows in Fig. 2, from the FDTD grid to the nonlinear

FETD buffer zone as the boundary values.
4. Use the Crank-Nicolson method to advance the fields in the nonlinear FETD subdomain from n-th

time step to (n + 1)-th time step with the boundary values updated from FDTD in Step 3 above.
After the solution of FETD subdomain for one full time step, the magnetic field values at the circles
in Fig. 2, denoted by Hn+1

FE , are known together with the other field values in the nonlinear FETD
sub-domains.

5. Pass Hn+1
FE , marked by empty arrows in Fig. 2, to the FDTD subdomain so that the fields in the

whole FDTD subdomain are now known for the (n + 1)-th time step.
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6. Go to Step 1 and repeat the process until the specified time window has been reached.

The interfaces between adjacent subdomains can be nonconforming because the DG scheme permits
discontinuous basis functions between adjacent subdomains. The elemental mass matrices for the
rectangular linear edge elements in the buffer zone are obtained by the trapezoidal integration rule [20].

3. NUMERICAL RESULTS

3.1. Wave Propagation in 2D Structure with Nonlinearity

As shown in Fig. 3(a), the first example is about plane wave propagation in a rectangular zone inserted
with one array of dielectric cylinders. The width and height of zone are 7.50 mm and 3.75 mm,
respectively. The periodic boundary conditions [21] are applied to the upper and lower edges, and the
perfectly matched layers [22] are used to truncate the computational domain along the x-direction. The
radius of each dielectric cylinder is 0.164 mm, and the nonlinear relative permittivity is εr = 9.6+0.6|E|2.

The lattice constants are both 0.492 mm along the x and y directions. This nonlinear problem is
solved by both nonlinear FDTD method [6] and the proposed scheme. Fig. 3 shows the hybridization of
FDTD grids and finite elements for the proposed scheme. The staggered Cartesian grid of Conventional
FDTD (20 ∗ 40 cells) is used for the discretization of the homogeneous around the array of dielectric
cylinders, and the unstructured element is applied to the zone filled with dielectric cylinders.

Discontinuous Galerkin technique is used to hybridize FDTD grid and unstructured element meshes.
Nonconforming discretization is allowed on the interfaces between adjacent subdomains. This feature
greatly improves the flexibility and efficiency of the proposed scheme in modeling the structures
comprising of small nonlinear regions in an otherwise linear medium. An incident plane wave with
transverse magnetic (TM) polarization is imposed at the left side of the computational domain. A
receiver is located 1.875 mm away from the left boundary of the computational domain, and the time
steps for the two methods are both 55 fs.

Figure 3. A rectangular zone filled with a array
of dielectric cylinders.

Figure 4. Hybrid mesh for the nonlinear
structure.
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Figure 5. Time varying received signals by nonlinear FDTD and the proposed method.
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Figure 6. Time varying relative error by nonlinear FDTD and the proposed method.

(a) (b)

Figure 7. Electric field (V/m) near the dielectric circular rods at 0.0330 ns. (a) The proposed method,
(b) nonlinear FDTD.

(a) (b)

Figure 8. Electric field (V/m) near the dielectric circular rods at 0.0495 ns. (a) The proposed method,
(b) nonlinear FDTD.

Figure 5 shows the simulated signals by the receiver for the two numerical techniques. The results
obtained by nonlinear FDTD with a fine mesh (160 ∗ 320) are used here as reference. Good agreements
can be observed between the results by the proposed method and nonlinear FDTD method. Fig. 6
shows the comparisons of relative errors by these two methods. From the figure we clearly see that the
proposed scheme can achieve higher level of accuracy only by refining the mesh of nonlinear regions.
Figs. 7–9 show the electric field near the dielectric circular rods at different times, and the results agree
well with nonlinear FDTD and the proposed method.

Table 1 shows the computational costs of the nonlinear FDTD and the proposed method, which
demonstrate the efficiency of the proposed method.



Progress In Electromagnetics Research M, Vol. 54, 2017 121

(a) (b)

Figure 9. Electric field (V/m) near the dielectric circular rods at 0.0660 ns. (a) The proposed method,
(b) nonlinear FDTD.

Table 1. Computational cost of the nonlinear FDTD and the proposed.

Coarse FDTD Fine FDTD The proposed method Benchmark

Grid 20*40 80*160 see Fig. 3 160*320

dt (fs) 55 55 55 55

Time length (ps) 220 220 220 220

Computational time (s) 14.53 256.46 161.22 1037.14

3.2. Nonlinear Structure with Multi-Subdomains

As shown in Fig. 10, the second example is about plane propagation in a rectangular zone inserted
with two arrays of dielectric cylinders. The width and height of zone are 11.25 mm and 3.75 mm,
respectively. The radius of each dielectric cylinder is 0.164 mm, and the nonlinear relative permittivity
is εr = 9.6 + 0.6|E|2. The lattice constants are both 0.492 mm along the x and y directions. The
separation of the two arrays is 3.75 mm.

The computational domain is meshed by an FDTD region outside (20∗65 cells), while the two arrays
of dielectric cylinders are discretized by two subdomains with unstructured finite element meshes. Fig. 10
shows the structure of this case, which is decomposed into three subdomains discretized separately. The

Figure 10. A rectangular zone filled with two arrays of dielectric cylinders.
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Figure 11. Time varying received signals by nonlinear FDTD and the proposed method.
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Figure 12. Time varying relative error by nonlinear FDTD and the proposed method.

Table 2. Computational cost of the nonlinear FDTD and the proposed.

Coarse FDTD Fine FDTD The proposed method Benchmark

Grid 20*65 80*260 see Fig. 10 160*520

dt (fs) 55 55 55 55

Time length (ps) 220 220 220 220

Computational time (s) 25.05 418.91 328.75 1686.28

meshes could be nonconforming on the interfaces between adjacent subdomains. The nonlinear FDTD
method and proposed method are used to solve this problem. A receiver is located 1.875 mm away from
the left boundary of the computational domain, and the time steps for the two methods are both 55 fs.
The results obtained by nonlinear FDTD with a fine mesh (160 ∗ 520) are used here as a benchmark.
Fig. 11 shows the calculated signals by the receiver for nonlinear FDTD and the proposed method.
Good agreements can be observed between the results by the proposed method and the benchmark,
which demonstrate the validity of the proposed method with multi-subdomains. Fig. 12 shows the
comparisons of relative errors by the nonlinear FDTD method and proposed method, and Table 2
shows the computational costs of the nonlinear FDTD and proposed method. We clearly see that the
relative error of the proposed method is approximate to the FDTD with fine grid, but the computational
time of proposed method is less.

4. CONCLUSIONS

We have demonstrated the validity of the nonlinear hybrid FDTD/FETD scheme by presenting
numerical results for instantaneous nonlinear media. Using the parametric quadratic programming
technique, this proposed scheme does not require updating system matrices and tedious iterative
procedure at every time step. The proposed technique allows nonconforming meshes between different
subdomains with linear and nonlinear media, making it suitable for structures comprised of small
nonlinear regions in an otherwise linear medium.
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