Vol. 53
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-01-06
A Clutter Suppression Method Based on Improved Principal Component Selection Rule for Ground Penetrating Radar
By
Progress In Electromagnetics Research M, Vol. 53, 29-39, 2017
Abstract
Principal component analysis is usually used for clutter suppression of ground penetrating radar, but its performance is influenced by the selection of main components of target signal. In the paper, an improved principal component selection rule is proposed for selecting the main components of target signal. In the method, firstly difference spectrum of singular value is used to extract direct wave and strong target signal, and then, Fuzzy-C means clustering algorithm is used to determine the weights of principal component of weak target signal. Finally, the principal components of strong target signal and weak target signal are reconstructed to obtain target signal. Experimental results show that the proposed method can effectively remove the clutter signals and reserve more target information.
Citation
Jichao Zhu, Wei Xue, Xia Rong, and Yunyun Yu, "A Clutter Suppression Method Based on Improved Principal Component Selection Rule for Ground Penetrating Radar," Progress In Electromagnetics Research M, Vol. 53, 29-39, 2017.
doi:10.2528/PIERM16102903
References

1. Daniels, D. J., Surface-Penetrating Radar, 2nd Ed., IEEE Press, 2004.
doi:10.1049/PBRA015E

2. Jol, H. M., Ground Penetrating Radar: Theory and Applications, Elsevier Science, 2009.

3. Chen, C. S. and Y. Jeng, "Nonlinear data processing method for the signal enhancement of GPR data," Journal of Applied Geophysics, Vol. 75, No. 1, 113-123, 2011.
doi:10.1016/j.jappgeo.2011.06.017

4. Soldovieri, F., I. Catapano, P. M. Barone, S. E. Lauro, E. Mattei, E. Pettinelli, G. Valerio, D. Comite, and A. Galli, "GPR estimation of the geometrical features of buried metallic targets in testing conditions," Progress In Electromagnetics Research B, Vol. 49, 339-362, 2013.
doi:10.2528/PIERB12120508

5. Yavuz, M. E., A. E. Fouda, and F. L. Teixeira, "GPR signal enhancement using sliding-window space-frequency matrices," Progress In Electromagnetics Research, Vol. 145, No. 2, 1-10, 2014.
doi:10.2528/PIER14010105

6. Brunzell, H., "Detection of shallowly buried objects using impulse radar," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 2, 875-886, March 1999.
doi:10.1109/36.752207

7. Brooks, J. W., L. M. V. Kempen, and H. Sahli, "Primary study in adaptive clutter reduction and buried minelike target enhancement from GPR data," Proc. SPIE, Vol. 4038, 1183-1192, 2000.
doi:10.1117/12.396226

8. Luo, Y. and G. Y. Fang, "GPR clutter reduction and buried target detection by improved Kalman filter technique," Proc. of 2005 IEEE Int. Conf. Machine Learning and Cybernetics., Vol. 9, 5432-5436, 2005.

9. Carevic, D., "Wavelet-based method for detection of shallowly buried objects from GPR data," Proceedings on Information, Decision and Control, 201-206, 1999.
doi:10.1109/IDC.1999.754154

10. Baili, J., S. Lahouar, M. Hergli, I. L. Al-Qadi, and K. Besbes, "GPR signal de-noising by discrete wavelet transform," NDT and E International, Vol. 42, No. 8, 696-703, December 2009.
doi:10.1016/j.ndteint.2009.06.003

11. Bao, Q. Z., Q. C. Li, and W. C. Chen, "GPR data noise attenuation on the curvelet transform," Applied Geophysics, Vol. 11, No. 3, 301-310, September 2014.
doi:10.1007/s11770-014-0444-2

12. Osjooi, B., M. Julayusefi, and A. Goudarzi, "GPR noise reduction based on wavelet thresholdings," Arabian Journal of Geosciences, Vol. 8, No. 5, 2937-2951, May 2015.
doi:10.1007/s12517-014-1339-5

13. Gunatilaka, A. H. and B. A. Baertlein, "Subspace decomposition technique to improve gpr imaging of antipersonnel mines," Proc. SPIE 4038, Detection and Remediation Technologies for Mines and Minelike Targets, Vol. V, 1008-1018, August 2000.

14. Abujarad, F., A. Jostingmeier, and A. S. Omar, "Clutter removal for landmine using different signal processing techniques," Proc. of the Tenth IEEE Int. Conf. Ground Penetrating Radar, 697-700, June 2004.

15. Lee, K. C., J. S. Qu, and M. C. Fang, "Application of SVD noise-reduction technique to PCA based radar target recognition," Progress In Electromagnetics Research, Vol. 81, 447-459, 2008.
doi:10.2528/PIER08032101

16. Nan, F. Y., S. Y. Zhou, Y. N. Wang, F. H. Li, and W. F. Yang, "Reconstruction of GPR signals by spectral analysis of the svd components of the data matrix," IEEE Geosci. Remote Sens. Lett., Vol. 7, No. 1, 200-204, January 2010.
doi:10.1109/LGRS.2009.2031657

17. Liu, H. B., X. Wang, and M. Zheng, "A clutter suppression method of ground penetrating radar for detecting shallow surface target," IET International Radar Conference 2015, 1-4, October 2015.

18. Karlsen, B., J. Larsen, H. B. D. Sorensen, and K. B. Jakobsen, "Comparison of PCA and ICA based clutter reduction in GPR systems for anti-personal landmine detection," Proc. 11th IEEE Signal Processing Workshop on Statistical Signal Processing, 146-149, 2001.
doi:10.1109/SSP.2001.955243

19. Abujarad, F., G. Nadim, and A. Omar, "Clutter reduction and detection of landmine objects in ground penetrating radar data using singular value decomposition (SVD)," Proc. of the 3rd Int. Workshop on Advanced Ground Penetrating Radar, 37-42, May 2005.

20. Shen, J. Q., H. Z. Yan, and C. Z. Hu, "Auto-selected rule on principal component analysis in ground penetrating radar signal denoising," Chinese Journal of Radio Science, Vol. 25, No. 1, 83-87, February 2010.

21. Grzegorczyk, T. M., B. Zhang, and M. T. Cornick, "Optimized SVD approach for the detection of weak subsurface targets from ground-penetrating radar data," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 3, 1635-1642, 2013.
doi:10.1109/TGRS.2012.2207906

22. Riaz, M. M. and A. Ghafoor, "Ground penetrating radar image enhancement using singular value decomposition," IEEE Int. Symp. Circuits & Systems, 2388-2391, 2013.

23. Bezdek, J. C., R. Ehrlich, and W. Full, "FCM: The fuzzy c-means clustering algorithm," Computers & Geosciences, Vol. 10, No. 2-3, 191-203, 1984.
doi:10.1016/0098-3004(84)90020-7

24. Pal, N. R. and J. C. Bezdek, "On cluster validity for the fuzzy c-means model," IEEE Trans. Fuzzy Syst., Vol. 3, No. 3, 370-379, 1995.
doi:10.1109/91.413225

25. Miyamoto, S., H. Ichihashi, and K. Honda, Algorithms for Fuzzy Clustering --- Methods in c-Means Clustering with Applications, Springer, 2008.