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A Clutter Suppression Method Based on Improved Principal
Component Selection Rule for Ground Penetrating Radar
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Abstract—Principal component analysis is usually used for clutter suppression of ground penetrating
radar, but its performance is influenced by the selection of main components of target signal. In the
paper, an improved principal component selection rule is proposed for selecting the main components
of target signal. In the method, firstly difference spectrum of singular value is used to extract direct
wave and strong target signal, and then, Fuzzy-C means clustering algorithm is used to determine the
weights of principal component of weak target signal. Finally, the principal components of strong target
signal and weak target signal are reconstructed to obtain target signal. Experimental results show that
the proposed method can effectively remove the clutter signals and reserve more target information.

1. INTRODUCTION

Ground Penetrating Radar (GPR) is an effective tool for underground detection [1,2] with convenient
operation, high resolution and non-destructiveness, and it is widely used in various fields such as civil
engineering, archaeology, geology and military. GPR data consist of target and clutter(direct wave,
underground clutter and other noise signals) [3-5]. It is difficult to extract target signal especially in
the shallow subsurface. Therefore, clutter suppression is an important task for target detection of GPR.

Several methods have been applied to clutter suppression in GPR, and among them are clutter
model-based methods [6-8], transform domain methods [9-12] and subspace projection methods [13—
17]. Principal Component Analysis (PCA) is a major subspace projection method [14, 15, 18-22], and
the main problem of PCA is how to select the principal components of target. An auto-selected rule
based on PCA is proposed in [20], and the defect of the method is that threshold selection depends on
experiences, which restricts the application of the method. A method based on SVD and Fuzzy-C Means
(FCM) is proposed in [22], but FCM is sensitive to single extreme point which causes the degradation
of clutter suppression performance.

To solve the problem of extracting weak target signal for point target detection, an improved
principal component selection rule based on difference spectrum of singular value and FCM is proposed
in the paper. Firstly, difference spectrum of singular value is used to determine the principal component
range of direct wave and strong target signal, and then, FCM is applied to the remaining singular
values to obtain the principal component weights of weak target signal. Finally, the target signal is
reconstructed with principal components of strong target signal and weighted principal components
of weak target signal. Some experiments in the case of near field have been executed to evaluate the
performance of the proposed method. The experimental results show that the proposed method can
remove clutter effectively and reserve more target information.
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2. PRINCIPLE OF CLUTTER SUPPRESSION BASED ON PCA

PCA is a linear transformation algorithm based on least mean square error, and it gets orthogonal
principal component of signal by special orthogonal matrix. SVD is usually used to implement
orthogonal decomposition in PCA, and the signal component corresponding to different singular value is
called principal component. Therefore, the selection of the principal component is actually the selection
of its corresponding singular value.

B-scan data of GPR can be represented by matrix X € , where M and N are sample numbers
for space and time, respectively. According to the composition of GPR data, X can be expressed as:

X =Xp+Xs+ X¢ (1)

where Xp is the direct wave, Xg the target signal, and X the interference signal (underground clutter
and other noise signals).
The SVD of X can be expressed as:

RMXN

X =UsvT (2)
where U € RM*M and V € R¥XN are unitary matrix. S = diag(oy,09,...,0,), 0; represents the
singular value of X with o9y > 09 > ... > 0, > 0, and r is the smaller value of M and N. u; is the

M x 1 vector and v; the N x 1 vector. Therefore,
X = ulalvlT + u202vg +..+ urarvz (3)

Different signal components are reflected by different singular values. The greater singular value
corresponds to the signal component with higher energy. The clutter suppression based on PCA firstly
determines the singular values of target signal, and then the target signal is reconstructed with its
corresponding singular values. In GPR data, the energy of Xp is larger, the energy of Xg in the middle
and the energy of X smaller, so the reconstructed target signal can be given by:

ko
XS = Z uiaiv;f (4)
i=ky
where k1 to ko are the subscripts of singular value (1 < k1 < ky <), and the singular values from k;
to k9 belong to target signal.

3. IMPROVED PRINCIPAL COMPONENT SELECTION RULE

3.1. FCM Algorithm

FCM is a clustering algorithm based on partition. In FCM algorithm, the objects belonging to same
cluster have the largest similarity, and different clusters have the smallest similarity by minimizing the
objective function [23-25]. If the sample A = (ay,as,...,a,) is divided into ¢ clusters (11,75, ..., T.)
by FCM algorithm, the objective function Jp,,(E,P) is:

Thom (E.P) =3 > edy; ()

i=1 j=1
where E = {e;;}nx. is the membership matrix, and e;; represents membership of specimen a; to cluster
T; and satisfies 25:1 eij = l,e;; > 0,Vi = 1,2,...,n. P = (p1,p2,...,pc) is the cluster center,
m € [1,00) the weighted exponent, and the optimal range is (1.5,2.5). d;; = |la; — p;|| is Euclidean
distance of specimen a; and cluster center p;.
The aim of clustering is to obtain the minimum value of the function Jg-,,(E,P). Two optimal
iterative formulas resulting from Lagrange multiplier theory are given by:

(6)

eij =
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n
m
E eij X ai

pj:izlni j=1,2,...,c (7)

m
E eij
=1

If the two adjacent iterative objective functions satisfy |J; — Jiy1| < €, the iteration will stop. ¢ is
the allowable error, and it is a small positive number.

3.2. Principal Component Selection Rule Based on Difference Spectrum and FCM

Since the singular value is in descending order, the energy of its corresponding signal component is also
in descending order. Direct wave has strong horizontal correlation and greater energy, and it corresponds
to the first few larger singular values. The energy of target decreases as the distance between target and
antenna increases. When target and antenna are far apart, the energy of target is close to the energy
of underground clutter and interference signals, and it is difficult to extract the weak target signal from
echo signal. In order to solve this problem, an improved principle component selection rule based on
difference spectrum and FCM is proposed in the paper.

Generally, the singular value of direct wave is much larger than that of target and interference
signals, so there is an abrupt change in the singular value curve, and here the difference spectrum of
singular value is used to describe the change and defined as:

q=0; — 0i+1 1'21,2,...,7’—1 (8)

The curve describes the variation between two adjacent singular values, and a peak will occur at
the position of abrupt of singular values. If the position of peak is k1, the reconstructed direct wave
can be given by:

k1
Xp = ZuiaiviT (9)
i=1

For the remaining r — k; singular values, target signal can be obtained through the combination of
difference spectrum and FCM. For two adjacent values (qx,qr+1) in the remaining difference spectrum
curve, the position relationship between k in the remaining difference spectrum curve and ko in the
whole difference spectrum is:

ko =k + ki (10)

When |gr — qx+1| reaches the maximum value, the singular values from the position kj + 1 to k2 is
considered to correspond to strong target signal, then the strong target signal can be given by:

.st'rong - Z u;o;Vv (11)

i=k1+1

Finally, FCM is used to divide the remaining singular values (0,41, 0k,+2, - - ., 0r) into two clusters.
One cluster is the weak target, and the other is interference signal. According to Equation (5), the
objective function is:

oo (B, P) Z Ze?}dfj (12)

i=ko+1 j=1

The two iterative formulas are:

p (13)
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T
m
E el'j X Ui

i=ko+1

T
§ m
eij

i=ko+1

pj = J=12 (14)

The weak target signal is given by weighted sum of signal components:

r
§ : T
XSweak = €;1U;0;V; (15)
i=kao+1

Hence the total target signal can be given by:

ko r
T T
Xg = ngtmng + ngmk = Z u;o;v; + Z €i1u;0;V; (16)
i=ki+1 i=ka+1

4. EXPERIMENTAL VERIFICATION

Simulation data and real GPR data in the case of near field have been applied to evaluate the
performance of the proposed method, auto-selected rule based on PCA [20] and FCM based on SVD [22].
Meanwhile, image entropy is used to estimate the clutter suppression performance of the three methods.

The image entropy is defined as:
2

M N
2. X(g)
i=1 j=1

Q= (17)

M N
D> XL g)

i=1 j=1

Image entropy represents the information capacity of image, smaller entropy represents better
clutter suppression performance.

4.1. Simulation Data

Simulation data are generated by GPRmax simulator based on finite difference time domain (FDTD)
method. The center frequency of antenna is 900 MHz, and the target is a perfectly conducting rebar with
0.05m diameter and buried at the depth of 0.22m. The medium is a homogenous medium (g, = 3.0,
0 =0.01S/m). The B-scan data contain 82 A-scans, and each A-scan contains 1696 samples.

Figure 1 shows the original GPR data in ideal condition, and Figure 2 shows the difference spectrum
curve and membership curve of the GPR data. For the proposed method, it can be seen that the strong
target signal corresponds to the second and third singular values from Figure 2(a) and Figure 2(b).
The fourth and later singular values are clustered by FCM. Figure 2(c) shows the membership function
curve. The curve of datal represents the membership of target signal, and the curve of data2 represents
the membership of interference signals.

Figure 3(a) shows auto-selected rule based on PCA produces obvious underground clutter.
Figure 3(b) shows FCM based on SVD eliminates clutter to a certain extent. Figure 3(c) shows that the
proposed method obtains least clutter on the top of the hyperbola, and the edge of the curve is clear.
Table 1 shows that the proposed method obtains the smallest entropy under ideal condition. Therefore,
the proposed method achieves better clutter suppression performance than other two methods under
ideal condition.

In practical application, GPR signal is inevitably influenced by various noises and interferences. In
order to evaluate the performance of the proposed method under different noise levels, the experiments
are also implemented for the simulation data with white Gaussian noise. Figure 4, Figure 7 and Figure 10
show the image of GPR data under different noise levels.
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Figure 1. Original image of simulation data (ideal condition).
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Figure 2. Difference spectrum curve and membership curve of simulation data (ideal condition). (a)
Difference spectrum curve of singular value. (b) Difference spectrum curve of singular value without
direct wave. (c¢) Membership function curve.
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Figure 3. Experimental results of simulation data (ideal condition). (a) Auto-selected rule based on
PCA. (b) FCM based on SVD. (c) Proposed method.

Figure 5, Figure 8 and Figure 11 show difference spectrum curves and membership curves of
simulation data under different noise levels. Figure 5(b) and Figure 8(b) show that strong target
signal corresponds to the second and third singular values. However, Figure 11(b) shows that strong
target signal corresponds to the second singular value, which indicates the loss of strong target signal
components under low SNR.
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Table 1. Entropy comparison of simulation data.

Methods simulation data
ideal condition | SNR =30dB | SNR =10dB | SNR = 3dB
Auto-selected rule based on PCA 6707.0 6878.1 44278 46019
FCM based on SVD 6588.4 6632.4 42042 44756
Proposed Method 6421.8 6616.1 40851 44737
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Figure 4. Original image of simulation data with noise (SNR = 30dB).
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Figure 5. Difference spectrum curve and membership curve of simulation data with noise (SNR =
30dB). (a) Difference spectrum curve of singular value. (b) Difference spectrum curve of singular value
without direct wave. (¢) Membership function curve.
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Figure 6. Experimental results of simulation data with noise (SNR = 30dB). (a) Auto-selected rule
based on PCA. (b) FCM based on SVD. (c) Proposed method.
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Figure 7. Original image of simulation data with noise (SNR = 10dB).
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Figure 8. Difference spectrum curve and membership curve of simulation data with noise (SNR =
10dB). (a) Difference spectrum curve of singular value. (b) Difference spectrum curve of singular value
without direct wave. (c¢) Membership function curve.
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Figure 9. Experimental results of simulation data with noise (SNR = 10dB). (a) Auto-selected rule
based on PCA. (b) FCM based on SVD. (c) Proposed method.

Figure 6 and Figure 9 show that the proposed method can effectively suppress clutter under higher
SNR. When SNR is 30dB and 10 dB, the results obtained by the proposed method are better than the
results obtained by other two methods. The proposed method also obtains the smallest entropy among
the three methods in Table 1. The clutter suppression performance of the proposed method drops with
the decrease of SNR. Figure 12 shows that the proposed method is unable to extract the target signal
when SNR decreases to 3dB, and the other two methods also fail to detect the target signal under lower
SNR.
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Figure 10. Original image of simulation data with noise (SNR = 3dB).
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Figure 11. Difference spectrum curve and membership curve of simulation data with noise (SNR =
3dB). (a) Difference spectrum curve of singular value. (b) Difference spectrum curve of singular value
without direct wave. (c¢) Membership function curve.
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Figure 12. Experimental results of simulation data with noise (SNR = 3dB). (a) Auto-selected rule
based on PCA. (b) FCM based on SVD. (c) Proposed method.

4.2. Real GPR Data

Real GPR data come from foreign anti-landmine research center. A PMN-2 Antipersonnel Landmine
with 12 cm in diameter and 5.3 cm in height is buried at the depth of 10 cm. An impulse GPR is used
to detect the landmine. The antenna is a shielding antenna, and its operation frequency is 1 GHz. The
B-scan contains 98 A-scans, and each A-scan contains 512 samples.
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Figure 13. Original image of real GPR data.
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Figure 14. Difference spectrum curve and membership curve of real GPR data. (a) Difference spectrum
curve of singular value. (b) Difference spectrum curve of singular value without direct wave. (c)
Membership function curve.
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Figure 15. Experimental results of real GPR data. (a) Auto-selected rule based on PCA. (b) FCM
based on SVD. (c¢) Proposed method.

Figure 13 shows the original image of real GPR data. Figure 14(a) shows that the first singular
value represents direct wave. Figure 14(b) shows that the second singular value represents strong
target. Figure 14(c) shows the membership function curve of the remaining singular values. Curve
of datal represents the membership of target signal, and curve of data2 represents the membership of
interference signals. Figure 15 shows that the proposed method can eliminate direct wave and other
clutter effectively, and it gets clearer target hyperbola than other two methods. Table 2 also shows that
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Table 2. Entropy comparison of real GPR data.

Methods Entropy
Auto-selected rule based on PCA | 1818.8
FCM based on SVD 1886.8
Proposed Method 1742.3

the proposed method obtains lowest entropy among the three methods, which further demonstrates
that the proposed method can improve the performance of clutter suppression.

5. CONCLUSION

PCA is an effective method for clutter suppression of GPR, and its performance is influenced by the
selection of target principal component. In order to solve the problem of extracting the weak target signal
for point target detection, an improved principal component selection rule based on difference spectrum
of singular value and FCM is proposed in the paper. The principal components of strong target signal
and the weight of principal components of weak target signal are determined by difference spectrum and
FCM respectively. The target signals are obtained by reconstructing principal components of strong
target signal and weighted principal components of weak target signal. The experimental results show
that the proposed method exhibits better clutter suppression performance than other two principal
component selection rules.
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