Vol. 53
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-12-18
Three-Dimensional Analysis of Ferrite-Loaded Waveguide Discontinuity by Transverse Operator Method Combined with Mode-Matching Method
By
Progress In Electromagnetics Research M, Vol. 53, 1-8, 2017
Abstract
In this paper, a rigorous study of rectangular waveguide partially filled with longitudinally magnetized ferrite is presented. The propagation constant as a function of frequency is first obtained by the use of Transverse Operator Method. We show the existence of the complex modes in this type of structures with ferrite. In these problems, the interface between an air filled rectangular waveguide and E-plane ferrite slab loaded rectangular waveguide represent a discontinuity problem. The analysis is based on the Mode Matching Method and the Transverse Operator Method which are combined in such a way as to determine the scattering parameters. The proposed approach is validated by comparing the presented results with the published data and numerical ones obtained from commercial software.
Citation
Faten Chaabane, Hafedh Benzina, Lassaad El Mir, and Junwu Tao, "Three-Dimensional Analysis of Ferrite-Loaded Waveguide Discontinuity by Transverse Operator Method Combined with Mode-Matching Method," Progress In Electromagnetics Research M, Vol. 53, 1-8, 2017.
doi:10.2528/PIERM16101703
References

1. Arndt, F., J. Bornemann, and R. Vahldieck, "Design of multisection impedance-matched dielectric-slab filled waveguide phase shifter," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 1, 34-38, January 1984.
doi:10.1109/TMTT.1984.1132608

2. Ise, K., K. Inoue, and M. Koshiba, "Three-dimensional finite-element solution of dielectric scattering obstacles in a rectangular waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 9, 1352-1359, September 1990.
doi:10.1109/22.58664

3. Yu, C. C. and T. H. Chu, "Analysis of dielectric-loaded waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 9, 1333-1338, September 1990.
doi:10.1109/22.58661

4. Abdulnour, J. and L. Marchildon, "Scattering by a dielectric obstacle in a rectangular waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 11, 1988-1994, November 1993.
doi:10.1109/22.273426

5. Seckelmann, R., "Propagation of TE modes in dielectric loaded waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 14, No. 11, 518-527, November 1966.
doi:10.1109/TMTT.1966.1126322

6. Eberhardt, N., "Propagation in the off center E-plane dielectrically loaded waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 15, No. 5, 282-289, May 1967.
doi:10.1109/TMTT.1967.1126452

7. Gardiol, F. E., "Circularly polarized electric field in rectangular waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 22, No. 5, 563-565, May 1974.
doi:10.1109/TMTT.1974.1128283

8. Uher, J., F. Arndt, and J. Bornemann, "Field theory design of ferrrite loaded waveguide nonreciprocal phase shifters with multisection ferrite or dielectric slab impedance transformers," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 6, 552-560, June 1987.
doi:10.1109/TMTT.1987.1133703

9. Solano, M. A., A. Vegas, and A. Prieto, "Modelling multiple discontinuities in rectangular waveguide partially filled with non-reciprocal ferrite," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 5, 797-802, May 1993.
doi:10.1109/22.234513

10. Pereda, J. A., L. A. Vielva, M. A. Solano, A. Vegas, and A. Prieto, "FDTD analysis of magnetized ferrites: Application to the calculation of dispersion characteristics of ferrite loaded waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 2, 350-357, February 1995.
doi:10.1109/22.348095

11. Benzina, H., H. Sakli, T. Aguili, and J. Tao, "Complex mode in rectangular waveguide filled with longitudinally magnetized ferrite slab," Progress In Electromagnetics Research M, Vol. 11, 79-87, 2010.
doi:10.2528/PIERM10010101

12. High Frequency Structure Simulator (HFSS), http://www.ansys.com/.

13. Green, J. J. and F. Sandy, "Microwave characterization of partially magnetized ferrites," IEEE Transactions on Microwave Theory and Techniques, Vol. 22, No. 6, 641-645, June 1974.
doi:10.1109/TMTT.1974.1128306

14. Schloemann, E., "Microwave behavior of partially magnetized ferrites," Journal of Applied Physics, Vol. 1, 1204, 1970.

15. Tao, J. W., J. Atechian, R. Ratovondrahanta, and H. Baudrand, "Transverse operator study of a large class of multidielectric waveguides," IEE Proceedings, Vol. 137, No. 5, 311-317, Pt. H, October 1990.

16. Chen, R. S., D. X. Wang, L. Chang, L. Zhu, and K. Wu, "Three dimensional analysis of dielectric-loaded waveguide discontinuity by edge FEM combined with SOC technique," Microwave and Optical Technology Letters, Vol. 27, No. 6, December 20, 2000.

17. Lee, S. W., W. R. Jones, and J. J. Campbell, "Convergence of numerical solutions of iris-type discontinuity problems," IEEE Transactions Microwave Theory and Techniques, Vol. 19, No. 6, 528-536, June 1971.
doi:10.1109/TMTT.1971.1127569

18. Mittra, R., T. Itoh, and T. S. Li, "Analytical and Numerical Studies of the relative convergence phenomenon arising in the solution of an integral equation by the Moment Method," IEEE Transactions Microwave Theory and Techniques, Vol. 20, No. 2, 96-104, February 1972.
doi:10.1109/TMTT.1972.1127691

19. Shih, Y. C. and K. G. Gray, "Convergence of numerical solutions of step-type waveguide discontinuity problems by modal analysis," IEEE MTT-S Digest, Vol. 83, No. 1, 233-235, 1983.