Vol. 55
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-22
Calculating Radar Cross Section of Lossy Targets Using the Surface Impedance Approach
By
Progress In Electromagnetics Research M, Vol. 55, 13-24, 2017
Abstract
In this paper, an effective numerical method based on a new surface impedance model is applied to the accurate calculation of the radar cross section of lossy conducting targets. The problem of determining the scattered electromagnetic fields from rectangular lossy conducting strips is presented and treated in detail. This problem is modeled by the method of moments to resolve integral equations of the first kind of surface current density with an accurate choice of basis and test functions. The illustrative computation results of complex surface impedance, surface current density and radar cross section are given for several cases. The accuracy of the method presented in this paper is verified by comparison with other methods, including the general-purpose full-wave simulators HFSS and CST.
Citation
El Mokhtar Hamham, Asmaa Zugari, and Abdelilah Benali, "Calculating Radar Cross Section of Lossy Targets Using the Surface Impedance Approach," Progress In Electromagnetics Research M, Vol. 55, 13-24, 2017.
doi:10.2528/PIERM16101503
References

1. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 1997.

2. Eugene, F. K., Radar Cross Section Measurements, Spring US, 1993.

3. Shaeffer, J. F., M. T. Tuley, and E. F. Knot, Radar Cross Section, Artech House, 1985.

4. Skolnik, M. I., Introduction to Radar Systems, McGraw Hill, 1985.

5. Barton, D. K., Modern Radar System Analysis, Artech House, 1988.

6. Nathanson, F. E., Radar Design Principles, 2nd Ed., McGraw Hill, 1991.

7. Meikle, H. D., Modern Radar Systems, Artech House, 2001.

8. Brookner, E., Aspects of Modern Radar, Artech House, 1998.

9. Kingsley, S. and S. Quegan, Understanding Radar Systems, McGraw Hill, 1992.

10. Skolnik, M., Radar Handbook, 2nd Ed., McGraw-Hill, 1990.

11. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, 1993.
doi:10.1109/9780470544631

12. Bancroft, R., Understanding Electromagnetic Scattering Using the Moment Method, Artech House, 1996.

13. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.
doi:10.2528/PIER07122502

14. Sevgi, L., Electromagnetic Modeling and Simulation, IEEE Press Wiley, 2014.
doi:10.1002/9781118716410

15. Hamham, E.M., F.Mesa, F.Medina, and M. Khalladi, "A surface-impedance Quasi-TEM approach for the efficient calculation of conductor losses in multilayer single and coupled microstrip lines," IET, Microwaves, Antennas & Propagation, Vol. 6, No. 5, 519-526, 2012.
doi:10.1049/iet-map.2011.0362

16. Hamham, E. M., "Application of Quasi-TEM surface impedance approach to calculate inductance, resistance and conductor losses of multiconductor microstrip line system," Progress In Electromagnetics Research M, Vol. 50, 85-93, 2016.
doi:10.2528/PIERM16070203

17. Hatamzadeh-Varmazyar, S. and M. Naser-Moghadasi, "New numerical method for determining the scattered electromagnetic fields from thin wires," Progress In Electromagnetics Research B, Vol. 3, 207-218, 2008.
doi:10.2528/PIERB07121303

18. Danesfahani, R., S. Hatamzadeh-Varmazyar, E. Babolian, and Z. Masouri, "A scheme for RCS determination using wavelet basis," Int. J. Electron. Commun., Vol. 64, 757-765, 2010.
doi:10.1016/j.aeue.2009.06.004

19. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2005.

20. Marqués, R., J. Aguilera, F. Medina, and M. Horno, "On the use of the surface impedance approach in the quasi-TEM analysis of lossy and superconducting strip lines," Mic. Opt. Tech. Lett., Vol. 6, No. 7, 391-394, 1993.
doi:10.1002/mop.4650060702

21. Aguilera, J., R. Marqués, and M. Horno, "Quasi-TEM surface impedance approaches for the analysis of MIC and MMIC transmission lines, including both conductor and substrate losses," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 7, 1553-1558, 1995.
doi:10.1109/22.392914