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Calculating Radar Cross Section of Lossy Targets Using the Surface
Impedance Approach

El M. Hamham1, *, Asmaa Zugari2, and Abdelilah Benali3

Abstract—In this paper, an effective numerical method based on a new surface impedance model is
applied to the accurate calculation of the radar cross section of lossy conducting targets. The problem
of determining the scattered electromagnetic fields from rectangular lossy conducting strips is presented
and treated in detail. This problem is modeled by the method of moments to resolve integral equations
of the first kind of surface current density with an accurate choice of basis and test functions. The
illustrative computation results of complex surface impedance, surface current density and radar cross
section are given for several cases. The accuracy of the method presented in this paper is verified by
comparison with other methods, including the general-purpose full-wave simulators HFSS and CST.

1. INTRODUCTION

When a perfectly conducting target is illuminated by an electromagnetic field, electric currents are
induced on the surface of the body. These currents act as new sources and create an electromagnetic
field radiated outward from the body. This field, called the scattered field, depends on the frequency and
the polarization of the incident field. The scattered field is also related to the physical dimensions and
shape of the illuminated body [1]. In real conducting body with finite conductivity illuminated with an
electromagnetic field, the fields extend into the conductor, but decrease rapidly with distance from the
surface due to the well-known skin effect. According to the ratio between the wavelength of the incident
field and the illuminated body size, at least three scattering regimes can be defined [2]. These are:
Low-frequency scattering, resonant scattering and high frequency scattering. The spatial distribution
of the power of the scattered field is characterized with radar cross section, or RCS as it is commonly
referred to in literature, which is a fictitious area of the target [3–10]. For simple scattering bodies, the
RCS can be computed exactly by a solution of the wave equation in a coordinate system for which a
constant coordinate coincides with the surface of the body [1, 2]. The exact solution requires that the
electric and magnetic fields just inside and just outside the surface satisfy certain conditions that depend
on the electromagnetic properties of the material of which the body is made. However, for complex
scattering bodies an alternative techniques based on the solution of the integral equations governing the
distribution of induced fields on the conducting target surfaces are used. These computational techniques
can be classified into two groups, the exact and approximate solution techniques. The exact methods,
as the Method of Moments (MoM) and the Finite Elements Method (FEM), are rigorous solutions
based on the integral and differential equations, respectively. However, some approximations may be
performed when solving the integral or differential equations by numerical techniques. The most useful
approach to solution is known as the method of moments which is a numerical technique [11–14] used to
approximately solve a system of linear homogeneous equations such as differential equations or integral
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equations. The unknown function is approximated by a finite series of known expansion functions with
unknown expansion coefficients. The approximate function is substituted into the original operator
equation and the resulting approximate equation is tested so that the weighted residual is zero. This
results into a number of simultaneous algebraic equations for the unknown coefficients. These equations
are then solved using matrix calculus. The method of moments has been used to solve a vast number
of EM problems during the last decades. The main advantage of the method of moments in the
calculation of the scattered fields is that the surface profile of the target body is unrestricted, allowing
the computation of the scattering from complex objects.

In this paper, we make use of the Galerkin’s method, that is a variant of the method of moments,
together with the surface impedance approach to calculate the RCS of an infinite lossy resistive
rectangular conducting strip in quasi Transverse Electromagnetic (TEM) frequency limit. Hence,
we present the procedures application of a recent version of the surface impedance technique for the
calculation of the induced current and the scattered field on the surface of a resistive conducting target
illuminated by an incident TM polarized field. If the source illuminating the target is at a far enough
distance, then the incident field can be taken as a plane wave. The surface impedance technique used
in this study has been developed in [15] for the calculation of conductor loss of single and two coupled
rectangular microstrip lines. The accuracy of this technique has been improved recently in [16] for three,
four and five coupled conducting strips embedded in a lossless dielectric medium. The main advantage of
this technique, based on quasi-TEM approximations, is the simplicity to deal with rectangular resistive
targets taking into account the thickness of the conductor and edge currents. As it is well known, when
a body is illuminated by a plane wave, the current is induced on its surface. However, around the edges
of the body this current has more complicated behavior, due to the diffraction of the incident field. The
edge diffracted field appears to come from a nonuniform line source located at the edge [1]. The bad
estimation of the edge current could affect the calculation of the RCS. The most of the works studying
lossy targets consider the later as a resistive conducting sheet. A resistive sheet is a special case of the
surface impedance since it does not support magnetic currents. In this case, they use an estimation of
the sheet resistivity [13, 17, 18]. In this work, we calculate the complex surface impedance by making
use of a good approximation. The solution yields the surface impedance at every point on the surface
of the body for a specified scattered field (or RCS) pattern. Once the surface impedance is known,
the electrical properties of the material can be determined. Therefore, in this paper we proceed as
follow: firstly we give a brief review of the basic elements in the analysis of rectangular conducting strip
as well as the fundamental concepts relative to the wave propagation under quasi-TEM approach and
surface impedance technique. Then, we present a detailed description of the application of Galerkin’s
method for the resolution of the surface current density integral equation by making use of adequate
triangular basis and test functions. Finally, we present the illustrative computation results of the surface
impedance, the surface current density, and the RCS for several cases. It is shown that the obtained
numerical results and those obtained with full wave commercial simulators are in good agreement.

2. CALCULATING THE RCS OF THE LOSSY TARGETS

The RCS of a target is defined isotropically as the ratio of the reflected power to the incident power
density. A general expression is given by

σ(φ) = lim
R→∞

4πR2 |Escat|2
|Einc|2 , (1)

where Einc is the electric field strength of the incident wave impinging on the target, and Escat is the
electric field strength of the scattered wave at the radar. The derivation of the expression assumes that
a target extracts power from an incident wave and then radiates that power uniformly in all directions.
R is typically taken to be the range from the radar to the target, and φ is the observation angle. Also,
it is possible to define a logarithmic quantity with respect to the RCS, so that

σdBsm = 10 log10 σ/1m2. (2)

The incident field that impinges on the surface of the target induces on it an electric current density,
Js, which in turn radiates the scattered field. The scattered field everywhere can be found using the
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following equation [1, 19]:

E(r)scat = −jωA− j
1

ωμε
∇(∇ ·A), (3)

where, A is the magnetic vector potential, ∇ the gradient operator, ω the angular frequency of the
incident field, ε the permittivity of the medium, and μ the permeability of the medium. The magnetic
vector potential can be found using the following equation [1, 19]:

A =
μ

4π

∫∫
S
Js(r′)

exp−jkR

R
dS′, (4)

where, R is the distance from the source point to the observation point. On the other hand, for the
perfect electric conductor (PEC), the total field on the surface of the target is zero. However, for real
conductor (with finite conductivity), the total field on the surface of the scatterer is determined by the
following boundary condition:

Etotal
t = −ZsJs, (5)

where, t stands for tangential components to the surface of the conductor, Zs the surface impedance,
and Js the surface current density.

The total field on the surface of the conductor, S, can be expressed as

Etotal
t (r = rs) = Escat

t (r = r′s) + Einc
t (r = rs), (6)

where, r = rs is the position vector of any point on the surface of the conductor target.
If the observations are restricted on the surface of the target, substituting Eq. (4) in Eq. (6) and

using the surface boundary condition (Eq. (5)) one can obtain the following expression:

j
η

k

[
k2

∫∫
S
Js(r′)G(rs, r′)dS′ + ∇

∫∫
S
∇′ · Js(r′)G(rs, r′)dS′

]
+ Zs(r = rs)Js(r = rs) = −Einc

t , (7)

where, η =
√

μ

ε
is the intrinsic impedance of the medium; k = ω

√
με is the phase constant; r and r′

are the position vectors of the observation point and source point respectively, and R = |r − r′|. With
G(r, r′) being the Green’s function of the three dimensional target:

G(r, r′) =
exp−jkR

4πR
. (8)

Eq. (7) is referred as Electric Field Integral Equation (EFIE). It is a general three-dimensional surface
boundary condition that can be simplified for the structure studied in this work (bidimensional).

3. RESOLUTION OF THE ELECTRIC FIELD INTEGRAL EQUATION

The assumptions that we will take into account are essentially quasi-TEM fields outside the conductor
strip and TM fields inside; that is,

Hz = 0, on all the structure
Ec

t = 0, on the conductor
At = 0, on the conductor
∇× Ed

t = 0, outside the conductor
∇× Hd

t = 0, outside the conductor.

(9)

From the above assumptions together with Maxwell’s equations, we can obtain the electromagnetic
fields wave equations on the conductors with the condition of good conductor (σc � ωε) as

(∇2
t − jωμ0σc)Hc

t = 0, (10)
(∇2

t − jωμ0σc)Ec
z = 0, (11)

where, subscripts c, z and t stand for conductor, longitudinal z-direction and transversal component,
respectively. μ0 is the free space permeability, and σc is the strip conductivity.
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According to the assumptions made above Eq. (9), only the electric transversal components are
relevant outside the conductors, and only the electric longitudinal components are relevant inside the
conductors (Ec

t = 0). Thus, from Eq. (3), Eq. (9), and Maxwell’s equations, the relations that relate
the fields to the potentials inside the conductors can be reduced to

Ht =
1
μ0

ẑ ×∇tAz, (12)

Ez = −jωAz, (13)

where Az is the magnetic potential component in the direction of propagation.
Then, from Eq. (11) and Eq. (13) we can obtain the potential vector wave equation inside the

conductor that can be written as:
(∇2

t − jωμ0σc)Az = 0. (14)

Outside the strip, the magnetic potential vector wave equation is the Laplace equation

∇2
tAz = 0, (15)

with the boundary condition Az = Cte, on the strip.
At this point it should be recognized that the electromagnetic problem remains magnetostatic

outside the conductors (Eq. (15)) and reduces to the diffusion equation (Eq. (14)) inside the conductors.
The rigorous computation of the total currents in the conductors implies the resolution of Eq. (14)

inside the conductors. Moreover, the resolution of the differential equation of the structure under study
Eq. (14) is not trivial. To circumvent these constraints, Marqués et al. have proposed an alternative
approximated method making use of the surface impedance concept [20, 21]. Recently, this concept has
been improved in [15, 16] by making use of a new calculation strategy.

3.1. Surface Impedance

For an ideal conductor in an EM field, the tangential component of the electric field at the surface is zero.
A current flows in a thin sheet on the surface, as required to support the magnetic field tangential to the
surface. This short-circuit boundary condition excludes all fields from the interior of the ideal conductor.
In a real conductor, the fields extend into the conductor, but decrease rapidly with distance from the
surface (skin effect). To avoid the complication of solving Maxwell’s equations inside conductors, it is
usual to make use of the concept of surface impedance. The surface impedance provides the boundary
condition for fields outside the conductor and accounts for the dissipation and energy stored inside
the conductor. The main idea of the surface impedance approach in the study of microstrip lines
with rectangular cross section, as presented in [15, 20], is to replace the thick conducting strip with
a zero-thickness sheet that carries an equivalent surface current density, Js. The main advantage of
this technique is to avoid the solution of a wave equation for the potential vector inside the thick strip
(Eq. (14)). The equivalent surface current density, Js, can be linearly related to the value of the electric
field longitudinal component, Ez, at the surface of zero-thickness resistive conductor strip as

Ez(x) = ZsJs(x), (16)

where Zs is the complex surface impedance of the conductor.
The calculation of Zs may be estimated a priori by an approximate phenomenological model that

takes into account the thickness of the conductor, the finite conductivity and other characteristics of
the structure. Otherwise it can be obtained numerically. In the next section we will present an existing
approximated model and we will develop an accurate quasi-TEM approach for the efficient numerical
computation of Zs.

The surface boundary condition in Eq. (16) along with Eq. (13) allows us to write

Az(x) =
j
ω

ZsJs(x). (17)
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3.2. Numerical Computation of Surface Impedance

The choice of the surface impedance introduced in the above equations can be done in many different
ways. One of those methods is the technique proposed by [20], which has been improved recently in
[15, 16]. The main advantage of this technique is that it can be combined with a quasi-TEM approach
to form the so-called quasi-TEM surface impedance approach.

We consider the thick resistive strip that is very long in the Z-direction of Fig. 1(a). According to
the surface impedance technique, this thick strip is substituted by a zero-thickness one that carries a
surface current density Js and a surface impedance Zs. The new approximate equivalent structure is
shown in Fig. 1(b). To obtain the surface impedance of this equivalent structure, we proceed as detailed
in [15]:

Zs =
Δ
σc

[
1 + Γ
1 − Γ

coth(Δt) − Γ
1 − Γ

coth(Δt/2)
]

, (18)

where Γ = H+
x /H−

x is the ratio between the tangential magnetic fields, Hx, on the upper (+) and lower
(−) interfaces of the conducting strip, Δ = (1 + j)/δ; δ is the skin depth in the metal, σ is the metal
conductivity; t is the metalization thickness. Thus, for the calculation of the ratio H+

x /H−
x we follow the

method proposed in [15]. This strategy results in a direct semi-numerical calculation and a faster CPU
time. For this purpose, we solve the following auxiliary magnetic quasi-static problem for the structure
in Fig. 1(b): {∇2

tAz = 0, outside the strip
Az = A0, on the strip

(19)

where Az is the longitudinal component of the potential vector; subscript t stands for transverse (to
z) components; A0 is an arbitrary constant. In order to solve the differential Eq. (19), we use the
Galerkin’s version of the method of moments. In this case, Eq. (19) is transformed into the following
integral equation for the surface current density, Jz, on the zero-thickness perfect conductor strip
(−W/2 ≤ x ≤ W/2) located at y = 0 (see Fig. 1(b)):

Az[Js] = A0, (20)

where

Az[Js] = μ0

∫ W/2

−W/2
Jz(x′)G(x − x′) dx′, (21)

with G(x− x′) being the Green’s function for the two dimensional free space problem on the conductor
strip surface (y = 0). This function can be written in the spatial domain as follows [12]:

G(r − r′) = − 1
4j

H(2)
0 (k|r − r′|), (22)

where, k = 2π/λ is the free space wave number, λ the wave length, μ0 = 4π × 10−7 the free space
permeability, and H(2)

0 a Hankel function of the second kind of zero order. According to the method

-W/2 W /2
x

y

c t

(a)
-W /2 W/2

x

Ez
inc

Iz

H
inc

Zs

y

Js

(b)

Figure 1. The structure under study: (a) A lossy strip with width, W , thickness, t, and conductivity,
σc, is encountered (illuminated) by an incoming TM -polarized plane wave. (b) Zero-thickness equivalent
structure with surface impedance ZS and surface current density JS . φ0 is the incident angle taking
the strip center as the origin of angles.
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of moments, the surface current density is approximated by a finite set of basis functions on the strip
surface. For a convenient description of the strip edge effects, as explained and detailled in [15, 20], Jz

is expanded in terms of Chebyshev polynomials weighted with the Maxwell edge distribution. Once the
unknown coefficients of the Jz expansion are computed, we can use Eq. (21) to obtain the longitudinal
vector potential, Az(x, y). The tangential magnetic field can finally be computed as

Hx(x, y) =
∂Az(x, y)

∂y
, (23)

and the values at the lower and upper strip interfaces of the zero-thickness strip are then given by
H−

x (x) = Hx(x, 0−), (24)

H+
x (x) = Hx(x, t), (25)

where 0− indicates an infinitesimal distance below y = 0 (see Fig. 1).
Finally we use the following definition of Γ:

Γ =
H+

x (0)
H−

x (0)
, (26)

where x = 0 stands for the center of the strip. Once we have the numerical value of Γ computed from
Eq. (26), it is introduced into Eq. (18) to obtain the corresponding surface impedance, Zs. At this
stage, the resolution of the lossless magnetic problem in Eq. (19) has been done to obtain the surface
impedance (Zs) that models the finite-conductivity of the strip. The next step is to introduce Zs in the
lossy magnetic problem and to solve the corresponding integral equation for the new surface current
density, J

(σc)
z , using the Galerkin’s method.

3.3. Lossy Rectangular Strip

For lossy zero-thickness strip, the integral equation for the current density defined in Eq. (17) can be
rewritten as

ωAz[J (σc)
s ] − jZsJ

(σc)
s = 0 , (27)

where Az[J
(σc)
s ] is defined in Eq. (21). In order to solve the integral Eq. (27), we apply the Galerkin’s

method and Parseval’s identity. Thus, we approximate the surface current density on the conductor
strip as the following finite sum of Nf basis functions, Jn,

J (σc)
s (x) =

Nf∑
n=0

αnJn(x). (28)

As we have mentioned before, one of the most important criteria that one should take it into account
in the choice of basis and test functions is the convergence of the involved reaction integrals. In this
sense, to approximate the surface current density for the case of lossy conductor strip, one could choose
the same basis and test functions as in the case of the calculation of the surface impedance in the
zero-thickness strip, i.e., the Chebyshev polynomials weighted with the Maxwell’s edge distribution.
However, this choice is not adequate because it leads to divergent integrals. Therefore, we use the
subdomain triangular basis and test functions which can be written in the spatial domain as

J0 =

{ x1 − x

x1 − x0
; x0 < x < x1

0 elsewhere
(29)

Ji =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x − xi

xi − xi−1
; xi−1 < x < xi

xi+1 − x

xi+1 − xi
; xi < x < xi+1

0 elsewhere

(30)

JNf
=

⎧⎨
⎩

x − xNf−1

xNf
− xNf−1

; xNf−1 < x < xNf

0 elsewhere
(31)
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(a) (b)

Figure 2. Triangular basis functions. (a) Uniform distribution. (b) Nonuniform distribution.

Fig. 2(a) illustrates the triangular impulses uniformly distributed along a conductor strip width.
However, the choice of basis and test functions is based on experience more than other criteri. In
this sense, we find that the triangular expansion functions used in this work as defined in Eq. (29)–
Eq. (31) and illustrated in Fig. 2(a) lead to a bad approximation of the surface current density when
the distribution elements, xi, are equally or uniformly spaced,

xi = −W

2
+

i

Nf
W, i = 0, 1, 2, . . . , Nf . (32)

To overcome this constraint, we use a nonuniform distribution based on sinusoidally spaced elements
defined as

xi =
W

2
sin

(
2i − Nf

2Nf
π

)
, i = 0, 1, 2, . . . , Nf . (33)

These nonuniform triangular functions are illustrated in Fig. 2(b). Finally, the total current on the
conducting strip is given by integrating the surface current density along the strip width as follows

Iz =
∫ W/2

−W/2
J (σc)

s (x) dx. (34)

4. NUMERICAL RESULTS AND DISCUSSION

We start the numerical analysis as we have done above. First of all, we give the numerical results of
the surface impedance calculation for the more significant parameters of the structure obtained by the
use of the zero-thickness technique.

In Fig. 3, we plot the variation of the real and imaginary parts of the surface impedance, that
is, the resistance and reactance, as function of the strip thickness for different frequencies. As can be
seen, for different frequencies and as long as the thickness increases, the effect of the imaginary part
that contributes to the conducting losses becomes as important as the real part. In addition, for high
frequencies this effect becomes more noticeable even for thin conducting strip. This behavior is due to
the skin depth.

To show the dependence of the surface impedance on the skin depth, we plot in Fig. 4 the variation
of the resistance and reactance of the conducting strip as a function of the strip conductivity for different
thicknesses. The static resistance, Rs defined bellow, is also reported for comparison

Rs =
√

ωμ0

2σc
. (35)

As can be seen, the behavior of the real and imaginary parts of the surface impedance changes as the
thickness of the conductor strip is increased. As expected, the surface resistance (real part) is inversely
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Figure 3. Real and imaginary parts of surface
impedance as function of the conducting strip
thickness for different frequencies. W = 6λ,
σc = 4 × 107.

Figure 4. Real and imaginary parts of surface
impedance as function of the conductivity for
different thickness with W = 6λ and frequency
= 0.3 GHz.

(a) (b)

Figure 5. The distribution of surface current density along the strip width obtained using triangular
basis functions. (a) Uniformly spacing. (b) Sinusoidally spacing. Strip thickness, t = 5µm, Frequency
= 0.3 GHz, σc = 5.8 × 107.

proportional to the variation of both thickness and strip conductivity. However, the surface reactance
(imaginary part) remains constant for thin strips for all the conductivity values and follows the same
behavior as the surface resistance for thick strips. The discrepancy in values between our results for
the surface resistance and the static one is due to the fact that the static surface resistance is based
on the approximation of a lossless strips and then it is independent of the metal thickness. Once the
surface impedance is calculated, we can solve the integral equation for the surface current density.
The results are shown in Fig. 5. There, we plot the approximated distribution of the surface current
density, Js, along the cross section of a rectangular conducting strip using both uniform and nonuniform
triangular functions in order to show the difference between them. As can be seen, the sinusoidally
spaced triangular functions give a good approximation of the surface current density in comparison
with the uniformly spaced functions. Moreover, when equally spaced basis and test functions are used
the approximate surface current density functions oscillate around the conducting strip center. However,
when the sinusoidal functions are used, the surface current density functions smoothly converge to their
limiting form as the number of the basis and testing functions increases. By integrating along the
conducting strip width, we can obtain the total current.

In Fig. 6, we show the magnitude of the current distribution across the surface of the conducting
strip for different thicknesses. It can be seen that the current distribution is strongly dependent on the
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Figure 6. The magnitude of the current distribution across the surface of the lossy strip for different
thicknesses. W = 6λ, Frequency = 0.3 GHz, σc = 5.8 × 107.

Table 1. The comparison of RCS maxima for different conducting strip widths as calculated in Fig. 7.

This work HFSS CST Approx.
W = 1 × λ 11.49 11.22 10.63 11.41
W = 2 × λ 16.96 17.09 18.81 16.94
W = 4 × λ 23.46 23.08 25.44 23.46
W = 6 × λ 26.69 26.61 29.19 26.67

strip thickness. The result for a perfect electrically conducting (PEC) strip is reported for comparison.
The results for the PEC case are obtained by taking Zs = 0 directly or σc very high in our numerical
model. The dependence of the current distribution on the strip thickness in Fig. 6 is related to the
surface impedance as it has been shown before.

We should note that, as can be seen from Fig. 6, for the PEC case the current presents singularity
at the conducting strip edges. This is because the triangular basis functions are not adequate for the
approximation of the currents at the lossy strip edges. For this reason, as explained in Section 3.1, we
use the Chebyshev polynomials weighted with Maxwell’s edge distribution to deal with lossless problem.
To illustrate the proposed model, to validate the accuracy of the approach presented in this work and
to better demonstrate the utility of the presented method for the calculation of the RCS, we report in
Fig. 7(a)–Fig. 7(d) the results of the bistatic RCS (BRCS) of a lossy conducting strip as a function of
the observation angle for different strip width. Our results are compared with those obtained using a
previous method based on an analytical approximation of the surface impedance [20], and the full wave
simulators HFSS and CST. These results show that the maximum of the RCS magnitude is proportional
to the conducting strip width. As wide as the conducting strip, the magnitude of the RCS increases.
The excellent agreement is observed between our results and those obtained by HFSS. However, it can
be seen that the maximums of RCS obtained by our approach and HFSS differ slightly from the results
obtained by CST. This is may due to the method used in CST to calculate the far-field components. A
quantitative comparison of the maximum of RCS values for different conducting strip widths is reported
in Table 1.

In Fig. 8, we plot the results of the monostatic RCS as a function of the aspect (observation)
angle of a 6-λ rectangular conducting strip with different thicknesses. We also report the results of
PEC strip which we compare with those obtained making use of the HFSS software. It is easily seen
from the figure that our results show a good agreement with those obtained with HFSS for the PEC
case. For the other cases, we omit HFSS results for the clarity of the figure. As expected, we can
see that when the strip is thicker, the maximum of the RCS decreases. Also, it is observed that the
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Figure 7. Bistatic RCS of a strip as a function of the observation angle for different widths. (a) W = λ.
(b) W = 2λ. (c) W = 4λ. (d) W = 6λ. Frequency = 0.3 GHz, σc = 5.8 × 107, φ0 = π/2.
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Figure 8. The monostatic RCS of a lossy rectangular strip for different thicknesses. W = 6λ, Frequency
= 0.3 GHz, σc = 5.8 × 107, φ0 = π/2. The thickness, t, is in µm.

RCS decreases with respect to the PEC case. In the light of the numerical results presented above, the
stability and accuracy of the numerical code based on the methods used in this study has been verified.
The good agreement of the results obtained by our surface impedance model with those provided by
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Figure 9. The bistatic RCS of a lossy strip of width W = 6λ for different strip thickness, t, in µm,
σc = 5.8 × 107. (a) φ0 = π/2. (b) φ0 = 3π/2.

Figure 10. The maximum of the BRCS as function of the strip width for different thicknesses.
Frequency = 0.3 GHz, σc = 5.8 × 107. The thickness, t, is in µm.

more involved full-wave electromagnetic simulators shows the generality of the model and its utility in
the calculation of the RCS. To complete the study, in Fig. 9 we plot the BRCS versus the observation
angle of a lossy rectangular strip for different strip thicknesses and incident angles. Thus, in Fig. 9(a)
and Fig. 9(b) we show the variation of BRCS for horizontal incidence (φ0 = π/2) and for oblique
incidence (φ0 = 3π/2), respectively. It can be seen that when the target is symmetrically seen from the
transmitter, the symmetry is also observed on the RCS variations around the orientation 0-degree.

Finally, in Fig. 10 we report the variation of the BRCS maxima as a function of the conducting strip
width normalized to wavelength for different thicknesses in the case of horizontal incidence (φ0 = π/2).

5. CONCLUSION

In this paper, the synthesis procedure is computer simulated, and the corresponding data are presented.
Using the surface impedance approach and the quasi-TEM approximations with a suite choice of
basis and test functions, it is possible to calculate the surface current induced by the illuminating
electromagnetic field. The scattered field is then calculated, and the problem of calculating the RCS
is treated in detail. To illustrate the procedure, a lossy rectangular strip is considered for bistatic
and monostatic RCS calculations. The numerical computation results are given for several cases and
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compared with those obtained making use of a previous surface impedance version, HFSS and CST.
The combination of the proposed method based on the surface impedance technique with the quasi-
TEM analysis provides accurate results that agree very well with those provided by the more involved
full-wave simulators in more practical situations.
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