Vol. 53
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-01-23
DOA Estimation in Solving Mixed Non-Circular and Circular Incident Signals Based on the Circular Array
By
Progress In Electromagnetics Research M, Vol. 53, 141-151, 2017
Abstract
Non-circular properties of non-circular signals can be used to improve the performance of the direction-of-arrival (DOA) estimation. However, most ready-made algorithms are not applicable to the general case in which both non-circular and circular signals exist. In this paper, we present a novel DOA estimation algorithm for mixed signals, namely MS-MUSIC (Mixed Signals - Multiple Signals Classification), which can deal with the two kinds of signals simultaneously. And on this basis, we derive the Cramer-Rao Lower Bound (CRLB) of the azimuth and elevation estimation. The effectiveness of the algorithm is confirmed by the simulation results. Meanwhile, it acquires higher accuracy than the traditional algorithms.
Citation
Minjie Wu, and Naichang Yuan, "DOA Estimation in Solving Mixed Non-Circular and Circular Incident Signals Based on the Circular Array," Progress In Electromagnetics Research M, Vol. 53, 141-151, 2017.
doi:10.2528/PIERM16092105
References

1. Xu, Y. and Z. Liu, "Noncircularity-exploitation in direction estimation of noncircular signals with an acoustic vector-sensor," Digital Signal Processing, Vol. 18, 777-796, 2008, ISSN: 1051-2004, DOI: 10.1016/j.dsp.2007.10.008.
doi:10.1016/j.dsp.2007.10.008

2. Longstaff, I. D., P. E. K. Chow, et al. "Directional properties of circular arrays," IEE Proc., Vol. 114, No. 6, 713-718, 1967, DOI: 10.1049/piee.1967.0142.

3. Mathews, C. P. and M. D. Zoltowski, "Eigenstructure techniques for 2-D angle estimation with uniform circular arrays," IEEE Transactions on Signal Processing, Vol. 42, No. 9, 2395-2407, 1994, ISSN: 1053-587X, DOI: 10.1109/78.317861.
doi:10.1109/78.317861

4. Abeida, H. and J. P. Delmas, "MUSIC-like estimation of direction of arrival for noncircular sources," IEEE Transactions on Signal Processing, Vol. 54, No. 7, 2678-2690, 2006, ISSN: 1053-587X, DOI: 10.1109/TSP.2006.873505.
doi:10.1109/TSP.2006.873505

5. Guo, R., X.-P. Mao, S.-B. Li, Y.-M. Wang, and X.-H. Wang, "A fast DOA estimation algorithm based on polarization MUSIC," Radioengineering, Vol. 24, No. 1, 214-225, 2015, DOI: 10.13164/re.2015.0214.
doi:10.13164/re.2015.0214

6. Shi, Y., L. Huang, C. Qian, and H. C. So, "Direction-of-Arrival estimation for noncircular sources via structured least squares-based ESPRIT using three-axis crossed array," IEEE Transactions on Aerospace and Electroninc Systems, Vol. 51, No. 2, 1267-1278, 2015, ISSN: 0018-9251, DOI: 10.1109/TAES.2015.140003.
doi:10.1109/TAES.2015.140003

7. Pan, Y., X. Zhang, S. Xie, J. Huang, and N. Yuan, "An ultra-fast DOA estimator with circular array interferometer using lookup table method," Radioengineering, Vol. 24, No. 3, 850-856, 2015, DOI:10.13164/re.2015.0850.
doi:10.13164/re.2015.0850

8. Tomic, S., M. Beko, and R. Dinis, "Distributed RSS-AoA based localization with unknown transmit powers," IEEE Wireless Communications Letters, Vol. PP, No. 99, 1-1, 2016, DOI: 10.1109/LWC.2016.2567394.

9. Li, J. and R. T. Compton, "Angle estimation using a polarization sensitive array," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 10, 1539-1543, 1991, ISSN: 0018-926X, DOI:10.1109/8.97389.
doi:10.1109/8.97389

10. Deschamps, G. A., "Techniques for handling elliptically polarized waves with special reference to antennas: Part II --- Geometrical representation of the polarization of a plane electromagnetic wave," Proceedings of the I.R.E., Vol. 39, 540-544, 1951, DOI:10.1109/JRPROC.1951.233136.
doi:10.1109/JRPROC.1951.233136

11. Nehorai, A. and E. Paldi, "Vector-sensor array processing for electromagnetic source localization," IEEE Transactions on Signal Processing, Vol. 42, No. 2, 376-398, 1994, ISSN: 1053-587/94, DOI: 10.1109/78.275610.
doi:10.1109/78.275610

12. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1986, ISSN: 0018-926X, DOI: 10.1109/TAP.1986.1143830.
doi:10.1109/TAP.1986.1143830

13. Bellman, R., Introduction to Matrix Analysis, 2nd Ed., The RAND Corporation, 1997, ISBN: 0-89871-3994.

14. Stoica, P. and A. Nehorai, "MUSIC, maximum likelihood, and Cramer-Rao bound," IEEE Transactions on Acoustics Speech and Signal Processing, Vol. 37, No. 5, 720-741, ISSN: 0096-3518, DOI: 10.1109/29.17564, 1989.
doi:10.1109/29.17564

15. Stoica, P. and A. Nehorai, "MUSIC, maximum likelihood, and Cramer-Rao bound: Further results and comparisons," IEEE Transactions on Acoustics SPEFCH and Signal Processing, Vol. 38, No. 12, 2140-2150, 1990, ISSN: 0096-3518, DOI: 10.1109/29.61541.
doi:10.1109/29.61541

16. Tomic, S., M. Beko, and R. Dinis, "RSS-based localization in wireless sensor networks using convex relaxation: Noncooperative and cooperative schemes," IEEE Transactions on Vehicular Technology, Vol. 64, No. 5, 2037-2050, 2015, DOI: 10.1109/TVT.2014.2334397.
doi:10.1109/TVT.2014.2334397