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DOA Estimation in Solving Mixed Non-Circular and Circular
Incident Signals Based on the Circular Array

Minjie Wu* and Naichang Yuan

Abstract—Non-circular properties of non-circular signals can be used to improve the performance of
the direction-of-arrival (DOA) estimation. However, most ready-made algorithms are not applicable
to the general case in which both non-circular and circular signals exist. In this paper, we present a
novel DOA estimation algorithm for mixed signals, namely MS-MUSIC (Mixed Signals-Multiple Signals
Classification), which can deal with the two kinds of signals simultaneously. And on this basis, we derive
the Cramer-Rao Lower Bound (CRLB) of the azimuth and elevation estimation. The effectiveness of
the algorithm is confirmed by the simulation results. Meanwhile, it acquires higher accuracy than the
traditional algorithms.

1. INTRODUCTION

Circularity is an important property of complex signals. A signal is regarded as circular if both the mean
and the elliptic covariance equal zero. However, non-circular signals have been widely used in modern
communication systems, such as amplitude modulation (AM) and binary phase shift keying (BPSK)
signals. While processing the noncircular signals, both the second-order characteristics and conjugate
relation characteristics can be adopted. And the information rates are increased [1]. In other words, it
virtually expands the number of elements. Consequently, the number of signals to be processed can be
larger than the number of elements. Moreover, it will improve the estimation accuracy.

Uniform circular array (UCA) is regarded as a typical planar array, and the array elements
are uniformly distributed on a circle. Compared with a uniform linear array (ULA), the UCA can
provide both the azimuth and elevation information, and the resolution is only dependent on the array
aperture and number of elements. The directional properties of circular arrays were reported in [2].
In [3], Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) was used to
solve the direction-of-arrival (DOA) estimation of the UCA. In addition, Abeida proposed a MUSIC-
Like algorithm to estimate the DOA of the non-circular signals in 2006 [4]. The author analyzed
non-circular signals and the corresponding properties with the ULA. Nevertheless, the algorithm was
computationally demanding for mixed signals. In [5], GUO provided a fast DOA estimation algorithm
based on polarization MUSIC. In [6], a structured least squares (SLS) — based ESPRIT algorithm for
DOA estimation of non-circular signals with a crossed array was devised. PAN introduced a lookup
table (LUT) method [7] to solve the DOA estimation based on the circular array interferometer, but
the polarization information was not considered.

This paper presents an efficient algorithm, to the best of the authors’ knowledge, for the first time
to solve the mixed non-circular and circular incident signals (MS-MUSIC) based on the circular array.
Compared with the existing methods, the proposed one has two main advantages. Firstly, the circular
signals can be easily distinguished from the mixed signals which reduces the computational complexity.
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Secondly, the MS-MUSIC outperforms the traditional MUSIC or the maximum likelihood algorithm in
estimation accuracy, particularly for the small number of snapshots.

The structure of this paper is as follows. In Section 2, the electromagnetic characteristics of
the circular array with diversely polarized antennas are described, and the MS-MUSIC algorithm is
presented. In Section 3, the Cramer-Rao Lower Bound (CRLB) is derived. Section 4 summarizes the
complexity analysis [8]. In Section 5, the numerical illustrations using the proposed algorithm are given.
Finally, we conclude the paper.

2. MS-MUSIC ALGORITHM PRINCIPLE

2.1. Notation

We use lowercase boldface letters to denote vectors and upper case boldface letters to denote matrices.
In addition, throughout the paper, (•)∗, (•)T and (•)H represent conjugation, transpose and conjugate
transpose, respectively. E{•} and tr{•} symbolize the expectation operator and the trace operator
respectively.

2.2. Geometries and Elements

We consider an array with N(N = 8) identical antenna elements as shown in Fig. 1. The elements are
uniformly distributed around a circle with radius R in the xOy plane. The circular array is not the
conventional UCA for the dipoles point to distinct directions. In essence, it is the polarization sensitive
array.
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Figure 1. The array structure of circular array consisting eight short dipoles.

Let the first element be the reference one with coordinates (R, 0, 0)T and assume that the remaining
elements stay at positions rn = (R cos(wn), R sin(wn), 0)T , where wn = 2π(n−1)/N represents the angle
from the x axis.

2.3. Mixed Signals Model and Direction Finding Algorithm

Assume that there are M incident narrowband signals with different polarizations. θm represents the
mth signal elevation angle, measured down from the z axis. ϕm indicates the mth signal azimuth angle,
measured counterclockwise from the x axis. The polarization property of the mth signal is depicted
by constants γm and ηm, the auxiliary polarization angle and the polarization phase difference [9],
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respectively. The array element spatial phase matrix of the mth signal is:

Υm = Υθm,φm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

um,1

. . .
um,M1

um,M1+1

. . .
um,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where M1 is the number of non-circular signals and Υm the diagonal matrix which indicates the
spatial coherent structures of the output. The kth diagonal element, um,k = e−j2π(εT

p (θm,ϕm)rk)/λm ,
denotes the space phase factor which relates the mth signal to the kth array element. Among which,
εp(θm, ϕm) = −[sin θm cos ϕm, sin θm sin ϕm, cos θm]T and λm are the propagation vector and the
wavelength of the mth signal, respectively. In addition, εv = [cos θm cos ϕm, cos θm sin ϕm,− sin θm]T

and εh = [− sin ϕm, cos ϕm, 0]T denote the vertical directional vector and the horizontal directional
vector, respectively. The unit vectors εv , εh and −εp, in that order, form a right-handed coordinate
system. If g is the gain when the signal perfectly matched the antenna polarization, the generalized
polarization sensitive matrix of the array is:

ℵ = g

⎡
⎢⎢⎢⎢⎢⎣

sin β1 cos α1 sin β1 sin α1 cos β1
...

...
...

sin βn cos αn sinβn sin αn cos βn
...

...
...

sinβN cos αN sin βN sin αN cos βN

⎤
⎥⎥⎥⎥⎥⎦ (2)

where (αn, βn) represents the nth dipole direction, and the nth row of ℵ denotes the electric field gain
of the short dipole.

Then, the signal steering vector is obtained

am = aθm,ϕm,γm,ηm = ΥmℵΨmhm (3)

where hm denotes the polarization vector [10], and it can be described by γm and ηm, i.e., hm =
[cos γm sin γmejηm ]T. Ψm is the steering vector of the angle field [11] and is independent of the space
location.

Ψm =

⎡
⎣ − sin ϕm cos θm cos ϕm

cos ϕm cos θm sin ϕm

0 sin θm

⎤
⎦ (4)

The array output can be expressed as:

x(t) =
M∑

m=1

amsm(t) + n(t) (5)

where sm(t) is the signal, and n(t) is assumed to be zero mean, complex Gaussian processes statistically
independent of each other, with covariance σ2

n. Assume that there only exist circular signals, i.e., M1 = 0.
Then the question will become simple, and the traditional MUSIC algorithm [12] can handle it. By
constituting the covariance matrix of x(t), the eigenvalue decomposition was then used to separate the
signal subspace from the noise subspace. It is worthwhile noting that the signal subspace is orthogonal
to the noise subspace. Thus, by virtue of the above property, the DOA estimation can be performed.
However, a more common and difficult problem is that the impinging signals to the array are a mixture
of non-circular and circular ones. The solution is to constitute the conjugate augmented array output
signal vector:

y(t) =
[

x(t)
x ∗ (t)

]
=

M∑
m=1

[
amsm(t)
a∗ms∗m(t)

]
+

[
n(t)
n∗(t)

]
(6)
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where y(t) consists of the output of the non-circular signal yr(t) and the circular signal yc(t)

y(t) = yr(t) + yc(t) + ñ(t) (7)

where

yc(t) =
[

am

a∗m

] [
sm(t)
s∗m(t)

]
m = M1 + 1,M1 + 2, . . . ,M (8)

ñ(t) =
[

n(t)
n∗(t)

]
(9)

For complex signal sm(t), its conjugate counterpart s∗m(t) can be represented as s∗m(t) =
sm(t)�me−j
m, where �m and �m denote the non-circular ratio and the corresponding non-circular
phase, respectively. For non-circular signals, we know that the non-circular ratio is 1. Then,
s∗m(t) = sm(t)e−j
m. And yr(t) can be derived:

yr(t) =
[

am

a∗m

] [
sm(t)
s∗m(t)

]
=

[
am

a∗m

] [
1

e−j
m

] [
sm(t)
sm(t)

]

=
[

am

a∗me−j
m

]
sm(t) m = 1, 2, . . . ,M1 (10)

Substituting Eqs. (8)∼ (10) into Eq. (7) yields the data model. The conjugate augmented covariance
matrix can be represented as Ryy = E{y(t)yH(t)}.

In addition, y(t) can be further simplified. It is assumed that arm = [
am

a∗me−j
m
], acm =

[ am

a∗m
], Ar = [ar1, ar2, . . . , arM1], Ac = [acM1 , acM1+1, . . . , acM ], where arm and acm are,

respectively, the non-circular and circular signal steering vectors. Arc = [Ar, Ac] represents the steering

matrix of the mixed signals. In addition, let scm(t) = [ sm(t)
s∗

m
(t) ], sc(t) = [scM1+1

(t), scM1+2(t), . . .,

scM(t)]T, sr(t) = [s1(t), s2(t), . . . , sM1(t)]
T, src(t) = [sr(t), sc(t)]T, where sc(t) is the circular source

and sr(t) the noncircular source. Thus, the above mentioned array conjugate augmented covariance
matrix can be derived

Ryy = E
{

[Arcsrc(t) + ñ(t)] [Arcsrc(t) + ñ(t)]H
}

= ArcRsA
H
rc + σ2

nI2N = Rys + σ2
nI2N = RH

yy (11)

where Rs = E{src(t)sH
rc(t)} is the covariance matrix of dimension (2M −M1)× (2M −M1). Rys is the

noiseless array output conjugate augmented covariance matrix. In the absence of multipath effect, the
M far-field narrowband polarization sources are assumed not completely coherent. So, Rys is full rank,
and we can find that the following equation holds

rank(Arc) = rank(Rs) = 2M − M1 (12)

Thus, rank(Rys) = 2M − M1. And there are 2M − M1 primary eigenvalues, and the remaining
2N − 2M + M1 ones equal zero. Rys may be decomposed into

Rys = U0Σ0U
H
0 = [Us0 Un0]

[
Σs0 O

O Σn0

][
UH

s0

UH
n0

]
(13)

Since Rys is noiseless, then
Us0ΣsU

H
s0

= ArcRsA
H
rc (14)

According to the property of the projection matrix [13], we get

span {Us0} = span {Arc} (15)

Taking the eigenvalue decomposition with respect to Ryy

Ryy = UΣUH = [Us Un]
[

Σs O

O Σn

] [
UH

s

UH
n

]
(16)
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and
span {Us} = span {Arc} = span {Us0} (17)

where Us is composed of the signal eigenvectors while Un is composed of the noise ones. The eigenvalues
are sorted to ensure λ1 ≥ λ2 ≥ . . . ≥ λ2M−M1 ≥ λ2M−M1+1 ≥ . . . ≥ λ2N = σ2

n. According to the
principles of the MUSIC algorithm, the array manifold spans the signal subspace and is orthogonal to
the noise subspace, so

aH
rmUnUH

n arm ≈ 0 (18)

The DOA estimates of MUSIC are obtained by scanning the possible azimuth and elevation values
to minimize Eq. (18). Needless to say, the above algorithm is expensive. For two-dimensional DOA
estimation problem, the process contains two-dimensional angle parameters search and two-dimensional
polarization parameters search. The multidimensional optimization search costs a lot, and the efficiency
is not high. So, we will transform Eq. (18) to another shape.

Toward this purpose, we define the parameter

Θm = Θθm,ϕm = ΥmℵΨm (19)

From Eq. (3), we know
am = ΥmℵΨmhm=Θmhm (20)

Rewriting arm

arm =
[

am

a∗me−j
m

]
=

[
Θmhm

Θ∗
m

h∗
m

e−j
m

]
=

[
Θm

Θ∗
m

]
︸ ︷︷ ︸

Θ̄m

[
hm

h∗
m

e−j
m

]
︸ ︷︷ ︸

h̄m

(21)

Combining Eq. (18) with Eq. (21), the new equation holds

ΘH
mUnUH

n Θm ≈ 0 (22)

Up to present, the polarization parameters have been successfully separated from the array
manifold. So, we need only to traverse the angle parameters to determine the DOAs which largely
reduces the amount of computations. From Eq. (22), we can estimate the DOAs of the mixed signals.
However, we may not distinguish the non-circular signals from the mixed ones. In view of this, the
noise subspace needs to be further divided.

Un=
[

Un(1 : N, :)
Un(1 : N, :)

]
=

[
Un1

Un2

]
(23)

In addition, we constitute the noise subspace eigenvectors of the circular signals, Zn=[ Un1

Un2
]

and the steering vector, 
cm = [ am

a∗m
]. From Eq. (15), we get

span {Arc}⊥span {Un} (24)

Therefore,
Zn
H

cm
cmZH
n ≈ 0 (25)

Through simplification, Eq. (25) is reduced to

ΘH
mZnZH

n Θm ≈ 0 (26)

Thus, the DOA estimation of circular signals can be derived. As stated above, the DOAs of mixed
signals are obtained from Eq. (22). So the remaining DOAs belong to the noncircular signals.
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3. DERIVATION OF CRLB

In the MUSIC joint spectra estimation, there are deflections in array covariance estimation due to the
limited samples. These deflections will have important effect on the estimations of signal subspace.
Because of this, CRLB [14] is always used to measure the estimation accuracy.

Provided that the thermal noise in the receiver is assumed to be zero mean, complex Gaussian
processes are statistically independent of each other, with covariance σ2

n. Then, from Eq. (5) we can
infer the received vectors following the multivariate Gaussian distribution. Therefore, the conditional
probability density function (CPDF) is

p(yk|θ, ϕ) =
1

πN |Ryy| exp
{−yH

k R−1
yy yk

}
k = 1, 2, . . . ,K (27)

where K denotes the number of snapshots. In practice, R̂yy= 1
K

K∑
k=1

yk(t)yH
k (t), the maximum likelihood

estimation of Ryy, is always used as the covariance matrix. Please note that R̂yy is independent of θ
and ϕ.

Here, we assume that the K samples are not related to each other, and the sampled CPDF is

p(Y |θ, ϕ) =
K∑

k=1

1
πN |Ryy| exp

{−yH
k R−1

yy yk

}
=

1

πKN |Ryy|K
exp

{
K · tr

{
R−1

yy R̂yy

}}
(28)

Taking the logarithm and ignoring the constants, the log-likelihood function of Eq. (28) is

L = −K ln (|Ryy|) − Ktr
{

R−1
yy · R̂H

yy

}
(29)

In the light of the definition of the Fisher information matrix [15],

I(θ) =

⎡
⎢⎢⎢⎣

−E

[
∂2L

∂θ2

]
−E

[
∂2L

∂θ∂ϕ

]

−E

[
∂2L

∂ϕ∂θ

]
−E

[
∂2L

∂ϕ2

]
⎤
⎥⎥⎥⎦ (30)

Substituting Eq. (29) into Eq. (30), I(θ) is obtained. The specific procedure of solving the matrix
partial derivative is omitted here. The results are given directly in Eq. (31):

I(θ) =

⎡
⎢⎢⎢⎣

K · tr
{

R−1
yy · ∂Ryy

∂θ
· R−1

yy · ∂Ryy

∂θ

}
K · tr

{
R−1

yy · ∂Ryy

∂θ
· R−1

yy · ∂Ryy

∂ϕ

}

K · tr
{

R−1
yy · ∂Ryy

∂ϕ
· R−1

yy · ∂Ryy

∂θ

}
K · tr

{
R−1

yy · ∂Ryy

∂ϕ
· R−1

yy · ∂Ryy

∂ϕ

}
⎤
⎥⎥⎥⎦ (31)

4. COMPLEXITY ANALYSIS

Computational complexity has a direct impact on feasibility of application [16]. The estimation steps
in implementing the MS-MUSIC are as follows:

1) Calculate the signal steering vector and derive the covariance matrix.
2) Obtain Un whose columns are the eigenvectors corresponding to the 2N − (2M − M1) least

eigenvalues of Ryy.
3) Compute the spectral function.

From Eq. (3), we know that the calculation of steering vector requires 3N2 + 10N multiplications and
2N2+4N additions. For convenience, we only consider the multiplication operation. The computational
complexity of calculating Ryy and the corresponding singular value decomposition are 4N2 and 8N3,
respectively. 16LJN 3(N −M +M1) multiplications are required to obtain the two-dimensional MUSIC
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spectra, where L and J denote the number of points in azimuth and elevation respectively. Thus, the
total computational complexity is:

16LJN3(N − M + M1) + MK(3N2 + 10N) + 8N3 + 4N2 (32)

In actual DOA estimation, K � N > M is a common situation. Thus, Eq. (32) can be further
simplified:

16LJN3(N − M + M1) + MK(3N2 + 10N) (33)

Then, the computational burden of the traditional MUSIC algorithm is considered. The spectra
of non-circular signals and circular signals are calculated separately. And the complexity regarding
non-circular signals approaches:

16LJN3(N − M1) + MK(3N2 + 10N) (34)

The computational load of circular signals approximates:

16LJN3(N − 2M + 2M1) + MK(3N2 + 10N) (35)

Thus, the total complexity of the traditional MUSIC is the sum of Eqs. (34) and (35). We may find
that MS-MUSIC outperforms traditional MUSIC in computational complexity as long as the number of
signals to be processed is less than the number of elements, a condition that is satisfied in most cases.

5. ILLUSTRATIVE EXAMPLES

In this section, Monte-Carlo simulation experiments are implemented to verify the effectiveness of the
MS-MUSIC algorithm. Firstly, we define the standard of the successful experiments, i.e., the absolute
value of the differences between the estimation value of DOA and the true value is less than 2 degrees.
Secondly, the absolute value of the differences between the estimated mean and the true value is regarded
as the deviation. Finally, the root of the difference between the estimation value and the estimation
mean is utilized as the estimation standard deviation. Under these premises, 100 independent simulation
experiments are carried out.

The array structure is shown in Fig. 1. The snapshot, K, is selected as 100. We assume that there
are two BPSK (noncircular) signals and one QPSK (circular) signal. The incident angles are (15◦, 20◦),
(35◦, 40◦) and (60◦, 65◦), respectively. The corresponding polarization auxiliary angles and polarization
phase differences are (20◦, 25◦), (50◦, 45◦), (65◦, 65◦). The two non-circular phases of the BPSK signals
are 26◦, 51◦. The SNR is 20 dB.

Figure 2 shows the simulation results of the MS-MUSIC algorithm. The position of the spectrum
peak represents the estimated DOA. So, the DOAs of the three signals are estimated at the same time.
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As mentioned above, we cannot distinguish the circular signals from the mixed ones. Consequently, we
take some transformations. According to Eq. (25), we get the spatial spectra of circular signals, and the
corresponding simulation results are shown in Fig. 3. Combining the results of Fig. 2 with Fig. 3, the
remaining two spectrum peaks belong to non-circular signals. In addition, the estimated DOA of the
circular signal is (60◦, 65.2◦) which is very close to the true value. Intuitively, the estimation accuracy
of the MS-MUSIC algorithm is high.

In order to analyze the performance of the MS-MUSIC algorithm quantitatively, we calculate the
CRLB. The simulation results can be seen in Fig. 4. We find that the signal parameters estimation
accuracies vary with the locations. When the elevation is large, the estimation accuracy becomes poor.
The reason is that the array aperture decreases as the elevation angle increases. In general, when the
elevation satisfies 0◦ ≤ θ < 90◦, the estimation accuracy of DOA is high.

Figure 5 displays the performance with a varying SNR from 0dB to 30 dB. Among them, Fig. 5(a)
displays the relationship between SNR and deviation while Fig. 5(b) reveals the SNR versus standard
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deviation. Without loss of generality, the above standard deviation is regarded as the mean of the
azimuth angles of the mixed signals. As for the elevation case, we can draw similar conclusions.
In addition, for notational convenience, we will simply use BPSK1-azimuth and BPSK1-elevation to
represent the azimuth and elevation angles of the first BPSK signal. Similarly, BPSK2-azimuth, BPSK2-
elevation, QPSK-azimuth and QPSK-elevation have the same meanings. It is clear that the deviation
or standard deviation varies inversely with SNR. The higher the SNR is, the lower the deviation is. The
standard deviation tends to be asymptotically stable when the SNR is greater than 20 dB. Additionally,
since the statistical data have certain randomness, the simulation curves in Fig. 5(a) are not smooth
and monotonously declined. To sum up, we can obtain a good estimation accuracy when the SNR is
greater than 9dB.

We increase the number of snapshots to 200, and the other conditions are the same as above. The
results are shown in Fig. 6. Compared with Fig. 5, both the deviation and standard deviation are
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improved, which is expected. Obviously, in the engineering design, the more the snapshots are, the
better estimation performance we can obtain. If we choose the point where the SNR equals 20 dB,
we can find the standard deviations of the two cases as 0.0042 (K = 100) and 0.0021 (K = 200),
respectively. In fact, these improvements can be predicted from Formula (31). In Formula (31), the
number of snapshots can be extracted from the Fisher information matrix. Moreover, the CRLB is
found as the [i, j] element of the inverse of the I(θ). So, we can conclude that CRLB is inversely
proportional to K. Thus, the estimation precision will be higher. The simulation results also verify the
validity of the MS-MUSIC algorithm.

Figure 7 shows the standard deviation versus the number of snapshots of the MS-MUSIC, traditional
MUSIC and the maximum likelihood. Similarly, the standard deviation is considered as the mean of
the azimuth angles of the mixed signals. The SNR is fixed at 20 dB. The performances of the three
algorithms are improved with the increase of number of snapshots. The proposed algorithm outperforms
the other two methods in the entire range especially when the number of snapshots is small. The reason
is that we exploit the extra information (i.e., the conjugate correlation statistical information) of the
non-circular signals.

6. CONCLUSION

For mixed non-circular and circular signals co-incident problems, the array output signal model based
on a circular array is analyzed, and the MS-MUSIC algorithm is proposed. On this basis, we derive
the CRLB. Compared with the existing methods, the proposed one has two main advantages. Firstly,
it acquires higher estimation accuracy by exploiting the conjugate relation characteristics. Secondly,
the circular signals can be identified easily which decreases the computational burden. Monte-Carlo
simulation results are presented verifying the efficacy of the proposed algorithm.
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