Vol. 52
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-11-07
Optimal Design of Photonic Band-Gap Structure Based on Kriging Surrogate Model
By
Progress In Electromagnetics Research M, Vol. 52, 1-8, 2016
Abstract
Toward an engineering optimization for photonic band-gap structures in waveguide filter, this paper presents an effective optimization method using Kriging surrogate model combing with semi-analytical spectral element method to maximize photonic band-gaps. Photonic crystals are assumed to be finite periodic structures composed of two dielectric materials with different permittivities. Kriging surrogate model is used to build an approximate function relationship between the photonic band-gaps and the design parameters of photonic crystals, replacing the expensive reanalysis for electromagnetic simulations of 3D periodic structure. The semi-analytical spectral element method is used to calculate the photonic band-gaps at different sampling points. Numerical results demonstrate that the proposed optimization method can effectively obtain maximum photonic band-gaps.
Citation
Hongxia Li, Bao Zhu, and Jiefu Chen, "Optimal Design of Photonic Band-Gap Structure Based on Kriging Surrogate Model," Progress In Electromagnetics Research M, Vol. 52, 1-8, 2016.
doi:10.2528/PIERM16091803
References

1. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2008.

2. Fleming, J. G., S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature, Vol. 417, 52-55, 2002.
doi:10.1038/417052a

3. Bermel, P., C. Luo, L. Zeng, L. C. Kimerling, and D. Joannopoulos, "Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals," Optics Express, Vol. 15, No. 25, 16986-17000, 2007.
doi:10.1364/OE.15.016986

4. Knight, J. C., "Photonic crystal fibres," Nature, Vol. 424, No. 6950, 847-851, 2003.
doi:10.1038/nature01940

5. Fang, Y., Y. Ni, S. Y. Leo, C. Taylor, V. Basile, and P. Jing, "Reconfigurable photonic crystals enabled by pressure responsive shape-memory polymers," Nature Communications, Vol. 6, 7416, 2015.
doi:10.1038/ncomms8416

6. Hart, E. E., A. Sobester, K. Djidjeli, M. Molinari, K. S. Thomas, and S. J. Cox, "A geometry optimization framework for photonic crystal design," Photonics Nanostructures-Fundamentals and Applications, Vol. 10, 25-35, 2012.
doi:10.1016/j.photonics.2011.06.005

7. Wang, D., Z. Yu, Y. Liu, P. Lu, L. Han, H. Feng, X. Gao, and H. Ye, "The optimal structure of two dimensional photonic crystals," Optics Express, Vol. 19, 19346-19353, 2011.
doi:10.1364/OE.19.019346

8. Meng, F., X. Huang, and B. Jia, "Bi-directional evolutionary optimiztion for photonic band gap structures," Journl of Computational Physics, Vol. 302, 393-404, 2015.
doi:10.1016/j.jcp.2015.09.010

9. Li, H. and X. Wang, "Design optimization of balloon-expandable coronary stent," Structural and Multidisciplinary Optimization, Vol. 48, 837-847, 2013.
doi:10.1007/s00158-013-0926-5

10. Chen, J., B. Zhu, W. Zhong, and Q. H. Liu, "A semi-analytical spectral element method for the analysis of 3-D layered structures," IEEE transactions Microwave Theory and Techniques, Vol. 59, No. 1, 1-8, 2011.
doi:10.1109/TMTT.2010.2090408

11. Zhong, W., "On precise integration method," Journal of Computational Applied Mathematics, Vol. 163, No. 204, 59-78, 2004.

12. Meurant, D., "A review on the inverse of symmetric tridiagonal and block tridiagonal matrices," SIAM Journal Matrix Analysis and Applications, Vol. 13, 707-728, 1992.
doi:10.1137/0613045

13. Joseph, V. R. and Y. Hung, "Orthogonal maximin latin hypercube designs," Statistica Sinica, Vol. 18, 171-187, 2008.