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Optimal Design of Photonic Band-Gap Structure Based on Kriging
Surrogate Model
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Abstract—Toward an engineering optimization for photonic band-gap structures in waveguide filter,
this paper presents an effective optimization method using Kriging surrogate model combing with semi-
analytical spectral element method to maximize photonic band-gaps. Photonic crystals are assumed to
be finite periodic structures composed of two dielectric materials with different permittivities. Kriging
surrogate model is used to build an approximate function relationship between the photonic band-gaps
and the design parameters of photonic crystals, replacing the expensive reanalysis for electromagnetic
simulations of 3D periodic structure. The semi-analytical spectral element method is used to calculate
the photonic band-gaps at different sampling points. Numerical results demonstrate that the proposed
optimization method can effectively obtain maximum photonic band-gaps.

1. INTRODUCTION

Photonic crystals are periodic optical structures in one, two or three dimensions. Photonic crystals are
also named photonic band-gap (PBG) structures because of their ability of allowing or forbidding the
propagation of light within certain frequency ranges [1, 2]. The photonic band-gaps in a photonic crystal
structure play a vital role to realize various applications [3–5] in the field of optical technology. Specific
band-gap is required in practice, so it is of great significance to design photonic band-gaps within certain
frequency ranges. The photonic band-gaps depend not only on the properties of dielectric materials in
photonic crystals but also the sizes and material distributions [6]. Therefore, in order to obtain large
band-gaps in phononic crystals, a structural optimization question is required to be solved: how to
find specific refractive indexes of dielectric materials as well as structural parameters to maximize the
specific photonic band gap.

The conventional method for design of photonic band gap (PBG) structures is a trial-and-error
process based on physical intuitions and parametric studies. This process would be inefficient and
specialized [7]. The design based on this process may not be an optimal solution. For infinite periodic
photonic crystals, Meng developed a systematic optimal design method based on sensitivity analysis
of a periodic unit cell [8]. However, for finite periodic photonic crystals, the entire PBG structure is
required to be analyzed rather than only one unit cell, and it can become much more computationally
expensive for 3D electromagnetic simulation. Therefore, it is still a challenge to optimize finite periodic
PBG structures with any band gap.

In order to optimize the PBG structure efficiently, we use Kriging surrogate models [9] combined
with semi-analytical spectral element method (SEM) [10] to construct global approximations for PBG
structure optimization. The highly efficient semi-analytical SEM is used to analyze the 3D structures of
PBG to obtain the photonic band-gaps at different sampling points, and it can achieve spectral accuracy
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with the increase of interpolation order of spectral elements. Kriging surrogate model, a semi-parametric
approach that does not rely on any specific model structure, is used to build an approximate function
relationship between the photonic band-gaps and the design parameters of photonic crystals, replacing
the expensive reanalysis for electromagnetic simulations of 3D periodic structure. The numerical
examples are given to demonstrate the efficiency of the proposed optimization algorithm for the design
of photonic crystals.

2. METHOD

2.1. Semi-Analytical SEM Analysis

A PBG structure with nine period shown in Fig. 1 is by 0.33 µm rectangular. Each layer of the PBG
structure is composed of a dielectric material layer and an air layer. The thicknesses of the air layer and
the dielectric material layer along the longitudinal direction are assumed to be a and b, respectively. The
circumferential boundary conditions of the PBG structure are PEC. Both ends of the PBG structure are
absorbing boundary conditions. The entire PBG structure was decomposed into several layers along the
longitudinal direction. Only one 2D 3rd order spectral elements were employed to discretize the cross
section for each substructure. The spectral element can avoid the well-known Runge phenomenon and
achieve spectral accuracy, which means the numerical results can converge exponentially as the increase
of interpolation order of basis functions. A Riccati equation based high precision integration (HPI)
method [11] was utilized to perform integration along the longitudinal direction for each substructure,
which was the undiscretized direction, to generate the stiffness matrix of the whole PBG structure. No
matter how long a substructure is, HPI method for the semi-discretized system can achieve machine
precision, i.e., the numerical errors of longitudinal integration by HPI can be as small as the round-off
error on a computer. Export stiffness matrices of substructures can be directly assembled to a global
system matrix taking the form of block tri-diagonal matrix. A block Thomas algorithm [12] is employed
here to solve the final system of equations with very high efficiency to obtain the transmission of the
PBG structures.

2.2. Optimization Problem

The aim for designing a photonic crystal is to maximize the band gap at the desired frequency band.
Therefore, optimal control model can be formulated as

Minimize Asb =

∫ f3

f2
S21df∫ f3

f2
df

S.t. a1 ≤ a ≤ a2

b1 ≤ b ≤ b2

ε1r ≤ εr ≤ ε2r

AL =

∫ f2

f1
S21df∫ f2

f1
df

≥ TL

AR =

∫ f4

f3
S21df∫ f4

f3
df

≥ TR

(1)

where a, b, and εr are variables of design, where 0 < a ≤ 1µm, 0 < b ≤ 1µm and 0 < εr ≤ 10. S21 is
the transmission coefficient of the PBG structure. f2 and f3 are the minimum and maximum frequency
of the desired frequency band, where f2 = 500 THz and f3 = 700 THz. f1 and f4 are the minimum
and maximum working frequency of the incident wave, where f1 = 300 THz and f4 = 900 THz. AL and
AR are the mean of transmission coefficient over corresponding frequencies. TL and TR are the design
allowed minimum mean of transmission coefficient over corresponding frequencies where TL = 5dB and
TR = 5 dB.
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Figure 1. A schematic view of PBG structure.

2.3. Kriging Surrogate Model

The Kriging surrogate model is described as a way of modeling a function as a realization of a stochastic
process:

ŷ(xi) = F(β,xi) + z(xi) = fT(xi)β + z(xi) (2)

where xi =
{
xi

1 , x
i
2, . . . , x

i
m

}
is the i-th sample point with variables; ŷ(xi) is an approximate function

fitted to n sample points; fT(xi) is a linear or nonlinear function of xi, the superscript T denotes the
transpose operator; β is the regression coefficient to be estimated; and z(xi) is the stochastic function,
with a mean of zero and a variance σ2. The spatial correlation function between stochastic functions is
given by

corr
[
z(xi), z(xj)

]
= R(θ,xi,xj) =

m∐
l=1

exp
[
−θ(xi

l − xj
l )

2
]

(3)

where R(θ,xi,xj) is the Gaussian correlation function with θ, which characterizes the spatial correlation
between two samples. Parameters can be estimated by maximizing the likelihood of samples.

σ̂2 =
(y − fTβ̂)

T
R−1(y − fTβ̂)
n

β̂ =
fTR−1y
fTR−1f

θ̂ = min
{
ψ (θ) ≡ |R| 1

ns σ2
}

(4)

where f = [f1,f2, . . . , fn]. The estimates β̂ and σ̂2 can then be obtained from Eq. (4).
The function value ŷ(x∗) at a new point x∗ can be approximately estimated as a linear combination

of the response values of sample Y

ŷ(x∗) = cTY (5)

The mean squared error (MSE) of this predictor is minimized with unbiased estimation, which gives

ŷ (x∗) = f (x∗) β̂ + r(x∗)Tγ (6)

where

γ = R−1
(
Y − Fβ̂

)
r (x∗) = [R (θ,x1,x∗) , . . . ,R (θ,xn,x∗)]

(7)

Thus we can predict the function value ŷ(x∗) at every new point x∗ by using Eq. (6).
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2.4. Expected Improvement

The simplest way for optimization is to find the minimum of the response surface which is interpolated
through the Kriging method. This way can easily lead to a local minimum, even if iterations are
performed. The expected improvement (EI) function [9] is used to balance local and global search. The
EI method computes the extent of improvement expected to achieve if sampling at a given point. Before
sampling at some point x, the value of Y (x) is unknown. Thus, Y (x) can be regarded as a random
variable normally distributed with a mean ŷ(x) and variance σ2 and given by the kriging predictor. If
the current best function value is Ymin, then we will achieve an improvement of I if Y (x) = Ymin − I.
The likelihood of achieving this improvement is given by the normal density function

fnormal (x) =
1√

2πσ (x)
exp

[
−(Ymin − I − ŷ (x))2

2σ2 (x)

]
(8)

The expected improvement is simply the expected value of the improvement found by integrating over
the following density:

E [I (x)] =
∫ I=∞
I=0 I

{
1√

2πσ(x)
exp

[
− (Ymin−I−ŷ(x))2

2σ2(x)

]}
(9)

Using integration by parts, one can show that
E [I (x)] = σ (x) [uΦ (u) + φ (u)] (10)

where

u =
Ymin − ŷ (x)

σ (x)
(11)

Φ and φ are the normal cumulative distribution and density functions, respectively.
The first term of Eq. (10) is the difference between the current minimum response value Ymin and

the prediction ŷ(x) at x, penalized by the probability of improvement. Hence, this value is large when
ŷ(x) is small. The second term is the product of the root mean squared error (RMSE) σ(x) and the
normal density function φ(u). The normal density function value is large when σ(x) is large and ŷ(x) is
closed to Ymin. Thus, the expected improvement will tend to be large at a point with a predicted value
smaller than Ymin and/or when there is a lot of uncertainty associated with the prediction.

2.5. The Convergence Criterion

The convergence criterion is here to satisfy
EI (xk)

Ymax − Ymin
≤ ε1

|f (xk) − ŷk| ≤ ε2

(12)

where ε1 and ε2 are the convergence tolerances. Ymax and Ymin are the maximal and minimal function
values in samples, respectively. ŷk is the approximate value of the objective function obtained by
Kriging model in the k-th iteration. An advantage of this convergence criterion is that the user can set
the relative tolerances ε1 and ε2 without prior consideration of the magnitudes of the problem response.

2.6. Optimization Algorithm

The optimization algorithm for a PBG structure based on the Kriging model combining with semi-
analytical SEM is illustrated in Fig. 2. In this optimization problem, optimal latin hypercube sampling
(LHS) method [13] was used to get the sampling points. The semi-analytical SEM simulation can be
seen as a black-box, in which design variables are input and the corresponding objective function Asb(x)
is output. Kriging surrogate model was used to construct a global approximate relationship between
the objective function Asb(x) and design variables based on the trial samples. After the approximate
relationship was constructed, EI function is used to balance local and global search and tends to find
the global optimal design. Sequential quadratic programming optimization algorithm was employed to
implement the design optimization based on maximum EI and obtain the modified design variables.
The optimization process stops when the convergence criterion is satisfied.
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Figure 2. Flow diagram for the optimization method based on Kriging surrogate model combined with
semi-analytical spectral element method.

3. RESULTS

The transmission coefficient of the PBG structure in the desired frequency band was minimized by the
proposed method shown in Fig. 3. It means that the photonic band-gap is maximized. The initial trial
samples shown in Fig. 4 are selected for building Kriging surrogate model, which include a 200 samples
selected by the optimal LHS. The transmission coefficient of the PBG structure for all trial samples are
obtained by semi-analytical SEM analysis. EI function was employed to balance local and global search
for design space. 17 iterations were required to obtain the optimal solution based on optimal LHS as
shown in Fig. 5–Fig. 8.

The optimization program stopped when all the criterions described in Fig. 2 were satisfied. The
optimization result is shown in Table 1 by comparing to the original design (optimal solution in initial
trial samples). The minimum transmission coefficient of the PBG structure in the desired frequency
band was reduced from −2.919 dB to −40.265 dB. These results show that this optimization method
based on the Kriging surrogate model can effectively reduce the transmission coefficient in the desired
frequency band to improve maximize the photonic band-gap of the PBG structure.

Figures 9–11 show the effect of each design variable on the normalized objective function value
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Figure 3. Stop-band characteristic for optimized
structure.
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Figure 4. Samples distributions of a optimal
LHS approach.
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Figure 5. Iterative histories for objective
function.
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Figure 6. Iterative histories for design variables
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εr.

when fixing other variables at their optimal values. The normalized objective function is defined as

Anorm
sb =

Asb − min(Asb)
max(Asb) − min(Asb)

(13)

These results show that the objective function value has multiple local optimal solution with the
design variable values, because of the complicate nature of the solution space. It is indicated that the
optimization method has the ability of global search.
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Table 1. Optimization results.

Design variable a b εr Objective function
Initial design 0.070 µm 0.021 µm 6.023 −29.92

Optimized design 0.212 µm 0.021 µm 5.483 −644.8
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Figure 9. The effect of design variable a on
the objective function value when fixing other
variables at the optimal values.
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Figure 10. The effect of design variable b on
the objective function value when fixing other
variables at the optimal values.
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Figure 11. The effect of design variable εr on the objective function value when fixing other variables
at the optimal values.

4. CONCLUSIONS

This paper investigates the optimization of photonic crystals in waveguide filter. A optimization
algorithm based on Kriging surrogate model combing with semi-analytical spectral element method
is proposed for the design of PBG structures. Through semi-analytical spectral element analysis,
the objective function values of sampling points are efficiently obtained. The optimization algorithm
maximized desired band gap of PBG structures without sensitivity analysis. Numerical results indicate
that the algorithm proposed in this paper is effective for optimal design of PBG structure in waveguide
filter.
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