Vol. 51
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-11-06
Diagnosis of Coupled Resonator Bandpass Filters Using VF and Optimization Method
By
Progress In Electromagnetics Research M, Vol. 51, 195-203, 2016
Abstract
This paper presents a hybrid method combining a vector fitting (VF) and a global optimization for diagnosing coupled resonator bandpass filters. The method can extract coupling matrix from the measured or the electromagnetically simulated admittance parameters (Y-parameters) of a narrow band coupled resonator bandpass filter with losses. The optimization method is used to remove the phase shift effects of the measured or the EM simulated Y-parameters caused by the loaded transmission lines at the input/output ports of a filter. VF is applied to determine the complex poles and residues of the Y-parameters without phase shift. The coupling matrix can be extracted (also called the filter diagnosis) by these complex poles and residues. The method can be used to computer-aided tuning (CAT) of a filter in the stage of this filter design and/or product process to accelerate its physical design. Three application examples illustrate the validity of the proposed method.
Citation
Rui Wang, Le-Zhong Li, Long Peng, Xiao-Qiang Tu, and Xiao-Xi Zhong, "Diagnosis of Coupled Resonator Bandpass Filters Using VF and Optimization Method," Progress In Electromagnetics Research M, Vol. 51, 195-203, 2016.
doi:10.2528/PIERM16083001
References

1. Thal, H. L., "Computer-aided filter alignment and diagnosis," IEEE Trans. Microw. Theory Tech., Vol. 26, No. 12, 958-963, Dec. 1978.
doi:10.1109/TMTT.1978.1129528

2. Bandler, J. W. and A. E. Salama, "Functional approach to microwave postproduction tuning," IEEE Trans. Microwave Theory Tech., Vol. 33, No. 4, 302-310, Apr. 1985.
doi:10.1109/TMTT.1985.1133076

3. Kacmajor, T. and J. J. Michalski, "Filter tuning based on linear decomposition of scattering characteristics," Progress In Electromagnetics Research, Vol. 135, 451-464, 2013.
doi:10.2528/PIER12112603

4. Gulgowski, J. and J. J. Michalski, "The analytic extraction of the complex-valued coupling matrix and its application in the microwave filter modeling," Progress In Electromagnetics Research, Vol. 130, 131-151, 2012.
doi:10.2528/PIER12061512

5. Miraftab, V. and R. R. Mansour, "Computer-aided tuning of microwave filters using fuzzy logic," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2781-2788, Dec. 2002.
doi:10.1109/TMTT.2002.805291

6. Meng, M. and K. L. Wu, "An analytical approach to computer-aided diagnosis and tuning of lossy microwave coupled resonator filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 12, 3188-3195, Dec. 2009.
doi:10.1109/TMTT.2009.2033868

7. Hu, H. and K.-L. Wu, "A generalized coupling matrix extraction technique for bandpass filters with uneven-Qs," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 2, 244-251, Feb. 2014.
doi:10.1109/TMTT.2013.2296744

8. Wang, R., L.-Z. Li, and L. Peng, "Diagnosis of lossy resonator filters with source-load coupling using Y-parameters," Int. J. RF Microwave Comput.-Aid. Eng., Vol. 24, No. 6, 713-717, Nov. 2014.
doi:10.1002/mmce.20816

9. Wang, R., L.-Z. Li, and L. Peng, "Improved diagnosis of lossy resonator bandpass filters using Y-parameters," Int. J. RF Microwave Comput.-Aid. Eng., Vol. 25, No. 9, 807-814, Nov. 2015.
doi:10.1002/mmce.20919

10. Lampérez, A. G., T. K. Sarkar, and M. S. Palma, "Generation of accurate rational models of lossy systems using the Cauchy method," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 10, 490-492, Oct. 2004.
doi:10.1109/LMWC.2004.834576

11. Macchiarella, G., "Extraction of unloaded Q and coupling matrix from measurements on filters with Large losses," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 6, 307-309, Jun. 2010.
doi:10.1109/LMWC.2010.2047455

12. Wang, R. and J. Xu, "Extracting coupling matrix and unloaded Q from scattering parameters of lossy filters," Progress In Electromagnetics Research, Vol. 115, 303-315, 2011.
doi:10.2528/PIER11021604

13. Wang, R., J. Xu, C.-L. Wei, M.-Y. Wang, and X.-C. Zhang, "Improved extraction of coupling matrix and unloaded Q from S-parameters of lossy resonator filters," Progress In Electromagnetics Research, Vol. 120, 67-81, 2011.
doi:10.2528/PIER11072804

14. Zhang, Y.-L., T. Su, Z.-P. Li, and C.-H. Liang, "A hybrid computer-aided tuning method for microwave filters," Progress In Electromagnetics Research, Vol. 139, 559-575, 2013.
doi:10.2528/PIER13032903

15. Pflüger, S., C. Waldschmidt, and V. Ziegler, "Coupling matrix extraction and reconfiguration using a generalized isospectral flow method," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 1, 148-157, Jan. 2016.
doi:10.1109/TMTT.2015.2498188

16. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 1, 1-10, Jan. 2003.
doi:10.1109/TMTT.2002.806937

17. Amari, S., R. Rosenberg, and J. Bornemann, "Adaptive synthesis and design of resonator filters with source/load-multiresonator coupling," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 8, 1969-1978, Aug. 2002.
doi:10.1109/TMTT.2002.801348

18. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems, 186-187, Wiley, 2007.