Vol. 51
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-10-30
Efficient Localization Algorithm of Mixed Far-Field and Near-Field Sources Using Uniform Circular Array
By
Progress In Electromagnetics Research M, Vol. 51, 139-146, 2016
Abstract
An efficient algorithm based on high-order cumulant is addressed for the scenarios where both far-field and near-field narrow-band signals may exist synchronously. The first matrix built by four-order cumulant is utilized to estimate the two dimensional direction-of-arrivals (DOAs) using the orthogonal projection matrix of the signal subspace and the virtual steering matrix. Then, the second matrix built by four-order cumulant is decomposed to get the noise subspace using the eigen decomposition. Meanwhile, a virtual steering matrix is used to distinguish far-field signals (FFSs) from near-field signals (NFSs). And one-dimensional MUSIC algorithm is used to estimate the range of the NFSs. Compared to the TSMUSIC, the proposed algorithm can provide high resolution for the DOAs. In addition, there is higher accuracy for the DOA of NFS in the proposed algorithm than that in TSMUSIC and in TSMD. Simulation results are carried out to certify the performance of the proposed algorithm.
Citation
Bing Xue, Guangyou Fang, and Yi-Cai Ji, "Efficient Localization Algorithm of Mixed Far-Field and Near-Field Sources Using Uniform Circular Array," Progress In Electromagnetics Research M, Vol. 51, 139-146, 2016.
doi:10.2528/PIERM16082401
References

1. Krim, H. and M. Viberg, "Two decades of array signal processing research: The parametric approach," IEEE Signal Processing Magazine, Vol. 13, No. 4, 67-94, 1996.
doi:10.1109/79.526899

2. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1986.
doi:10.1109/TAP.1986.1143830

3. Rot, R. and T. Kailath, "Esprit-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 7, 984-995, 1989.
doi:10.1109/29.32276

4. Liang, J. and D. Liu, "Passive localization of mixed near-field and far-field sources using two-stage music algorithm," IEEE Transactions on Signal Processing, Vol. 58, No. 1, 108-120, 2010.
doi:10.1109/TSP.2009.2029723

5. Wang, B., Y. Zhao, and J. Liu, "Mixed-order MUSIC algorithm for localization of far-field and near-field sources," IEEE Signal Processing Letters, Vol. 20, No. 4, 2013.
doi:10.1109/LSP.2013.2245503

6. Jiang, J., F. Duan, J. Chen, Y. Li, and X. Hua, "Mixed near-field and far-field sources localization using the uniform linear sensor array," IEEE Sensors Journal, Vol. 13, No. 8, 3136-3143, 2013.
doi:10.1109/JSEN.2013.2257735

7. Liu, G. and X. Sun, "Two-stage matrix differencing algorithm for mixed far-field and near-field sources classification and localization," IEEE Sensors Journal, Vol. 14, No. 6, 1957-1965, 2014.
doi:10.1109/JSEN.2014.2307060

8. Xie, J., H. Tao, X. Rao, and J. Su, "Passive localization of mixed far-field and near-field sources without estimating the number of sources," Sensors, Vol. 15, No. 15, 3834-3853, 2015.
doi:10.3390/s150203834

9. Tao, H., J. Xin, J. Wang, N. Zheng, and A. Sano, "Two-dimensional direction estimation for a mixture of noncoherent and coherent signals," IEEE Transactions on Signal Processing, Vol. 63, No. 2, 318-333, 2015.
doi:10.1109/TSP.2014.2369004

10. Wang, G., J. Xin, N. Zheng, and A. Sano, "Computationally efficient subspace-based algorithm for two-dimensional direction estimation with L-shaped array," IEEE Transactions on Signal Processing, Vol. 59, No. 7, 3197-3212, 2011.
doi:10.1109/TSP.2011.2144591

11. Wu, Y., H. Wang, Y. Zhang, and Y. Wang, "Multiple near-field source localisation with uniform circular array," Electronics Letters, Vol. 49, No. 24, 1509-1510, 2013.
doi:10.1049/el.2013.2012

12. Jung, T. and K. Lee, "Closed-form algorithm for 3-D single-source localization with uniform circular array," IEEE Antennas Wireless Propagation Letters, Vol. 13, No. 6, 1096-1099, 2014.
doi:10.1109/LAWP.2014.2327992

13. Liao, B., Y. Wu, and S. Chan, "A generalized algorithm for fast two dimensional angle estimation of a single source with uniform circular array," IEEE Antennas Wireless Propagation Letters, Vol. 11, 984-986, 2012.
doi:10.1109/LAWP.2012.2213792