1. Raab, F. H., P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic, and N. O. Sokal, "Power amplifiers and transmitters for RF and microwave," IEEE Trans. Microw. Theory Tech., Vol. 50, 814-826, 2002.
doi:10.1109/22.989965
2. Saphiro, E., J. Xu, A. Naga, F. Williams, U. Mishra, and R. York, "A high efficiency traveling-wave power amplifier topology using improved power-combining technique," IEEE Microw. Guided Wave Lett., Vol. 8, No. 3, 133-135, Mar. 1998.
doi:10.1109/75.661139
3. Gassmann, J., P. Watson, L. Kehias, and G. Henry, "Wideband, high-efficiency GaN power amplifiers utilizing a non-uniform distributed topology," IEEE MTT-S Int. Microw. Symp. Dig., 615-618, Jun. 2007.
4. Kim, B. and H. Q. Tserng, "0.5 W 2-21 GHz monolithic GaAs distributed amplifier," Electronics Letters, Vol. 20, 288-289, Mar. 1984.
doi:10.1049/el:19840197
5. Chen, K. and D. Peroulis, "Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3162-3173, Dec. 2011.
doi:10.1109/TMTT.2011.2169080
6. Carrubba, V., J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A novel highly efficient broadband continuous class-F RFPA delivering 74% average efficiency for an octave bandwidth," IEEE MTT-S Int. Micro. Symp. Dig., 1-4, 2011.
7. Chen, K. and D. Peroulis, "Design of broadband high-efficiency power amplifier using in-band class-F^(-1)/F mode transferring technique," IEEE MTT-S Int. Microw. Symp. Digest, 17-22, Montreal, QC, Canada, Jun. 2012.
8. Wright, P., J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A methodology for realizing high efficiency class-J in a linear and broadband PA," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 12, 3196-3204, 2009.
doi:10.1109/TMTT.2009.2033295
9. Igi, S., M. Kobiki, T. Sakayori, M. Ohashi, M. Wataze, T. Suzuki, and K. Kusunoki, "Internally matched (IM) plated source bridge (PSB) power GaAs FET achieving a high performance power amplifier in X-band," IEEE MTT-S Int. Micro. Symp. Dig., 153-155, 1982.
doi:10.1109/MWSYM.1982.1130644
10. Aaen, P. A., J. A. Pla, and C. A. Balanis, "Modeling techniques suitable for CAD-based design of internal matching networks of high-power RF/microwave transistors," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 7, 3052-3059, Jul. 2006.
doi:10.1109/TMTT.2006.877033
11. Aaen, P. H., J. A. Pla, and C. A. Balanis, "On the development of CAD techniques suitable for the design of high-power RF transistors," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 10, 3067-3074, Oct. 2005.
doi:10.1109/TMTT.2005.855129
12. Schnieder, F., O. Bengtsson, F.-J. Schmuckle, M. Rudolph, and W. Heinrich, "Simulation of RF power distribution in a packaged GaN power transistor using an electro-thermal large-signal description," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 7, 2603-2609, 2013.
doi:10.1109/TMTT.2013.2261089
13. Flucke, J., F.-J. Schmuckle, W. Heinrich, and M. Rudolph, "An accurate package model for 60 W GaN power transistors," Eur. Microw. Integr. Circuits Conf., 152-155, 2009.
14. Dawson, D., "Closed-form solutions for the design of optimum matching networks," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 1, 121-129, Jan. 2009.
doi:10.1109/TMTT.2008.2009041
15. Rhea, R. W., HF Filter Design and Computer Simulation, Noble, 1994.
16. Saad, P., C. Fager, H. Cao, et al. "Design of a highly efficient 2-4 GHz octave bandwidth GaN-HEMT power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 7, 1677-1685, 2010.
doi:10.1109/TMTT.2010.2049770
17. Canning, T., P. J. Tasker, and S. C. Cripps, "Continuous mode power amplifier design using harmonic clipping contours: Theory and practice," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 1, 100-110, 2014.
doi:10.1109/TMTT.2013.2292675
18. Dai, Z., S. He, F. You, et al. "A new distributed parameter broadband matching method for power amplifier via real frequency technique," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 2, 449-458, 2015.
doi:10.1109/TMTT.2014.2385087