Vol. 64
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-11-27
A Miniaturized Quasi-Self-Complementary UWB Antenna with Band-Rejection Characteristic
By
Progress In Electromagnetics Research Letters, Vol. 64, 43-49, 2016
Abstract
A miniaturized ultra-wideband (UWB) quasi-self-complementary antenna (QSCA) with band-rejection characteristic is presented and discussed. With the tapered microstrip-fed line and flower-shaped QSC structure, a lower cut-in frequency (3.18 GHz) is obtained with a compact size (9x17.5x1 mm3). By embedding a five-star-shaped ring resonator under the radiation patch, a band-notched feature is achieved. The measured impedance bandwidth below 2:1 VSWR is from 3.18 GHz to 13.4 GHz with a rejection band from 5.45 GHz to 5.95 GHz, and the simulated and measured results of the proposed antenna are in good agreement. Thus, the antenna is suitable to be integrated with the space-limited wireless system without electromagnetic interference at the WLAN (5.47-5.825 GHz) band.
Citation
Li Xu, and Peng Gao, "A Miniaturized Quasi-Self-Complementary UWB Antenna with Band-Rejection Characteristic," Progress In Electromagnetics Research Letters, Vol. 64, 43-49, 2016.
doi:10.2528/PIERL16081201
References

1. Ramazan, A. S., A. Mohammad, and N. Mohammad, "UWB antenna based on SCRLH-TLs for portable wireless devices," Microw. Opt. Technol. Lett., Vol. 58, No. 1, 69-71, 2016.
doi:10.1002/mop.29491

2. Ellis, M. S., Z. Q. Zhao, J. W. Wu, Z. P. Nie, and Q. H. Liu, "Small planar monopole ultra-wideband antenna with reduced ground plane effect," IET Microw. Antennas Propag., Vol. 9, No. 10, 1028-1034, 2015.
doi:10.1049/iet-map.2014.0538

3. Singha, S., T. Geol, and A. K. Singh, "Inner tapered tree-shaped fractal antenna for UWB applications," Microw. Opt. Technol. Lett., Vol. 57, No. 3, 559-567, 2015.
doi:10.1002/mop.28900

4. Tripathi, S., A. Mohan, and S. Yadav, "A compact octagonal-shaped fractal UWB antenna with sierpinski fractal geometry," Microw. Opt. Technol. Lett., Vol. 57, No. 3, 570-574, 2015.
doi:10.1002/mop.28901

5. Mishra, G. and S. Sahu, "Compact circular patch UWB antenna with WLAN band notch characteristics," Microw. Opt. Technol. Lett., Vol. 58, No. 5, 1068-1073, 2016.
doi:10.1002/mop.29727

6. Huang, C. and J. Su, "A printed band-notched UWB antenna using quasi-self-complementary structure," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1151-1153, 2011.
doi:10.1109/LAWP.2011.2172178

7. Huang, C. and J. Su, "A printed quasi-self-complementary antenna for band-notched UWB applications," Microw. Opt. Technol. Lett., Vol. 54, No. 8, 1879-1882, 2012.
doi:10.1002/mop.26961

8. Lin, C., "Compact bow-tie quasi-self-complementary antenna for UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 987-989, 2012.

9. Zhang, K., Y. X. Li, and Y. L. Long, "Band-notched UWB printed monopole antenna with a novel segmented circular patch," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1209-1212, 2010.
doi:10.1109/LAWP.2010.2099095

10. Hany, A. A., B. A. Adel, Y. Kuniaki, and K. P. Ramesh, "Design of dual band-notched CPW-fed UWB planar monopole antenna using microstrip resonators," Progress In Electromagnetics Research Letters, Vol. 59, 51-56, 2016.

11. Lin, C. C., C. Y. Huang, and J. Y. Su, "Ultra-wideband quasi-self-complementary antenna with band-rejection capability," IET Microw. Antennas Propag., Vol. 5, No. 13, 1613-1618, 2011.
doi:10.1049/iet-map.2011.0043

12. Abbas, S. M., Y. Ranga, A. K. Verma, and K. P. Esselle, "A simple ultra wideband printed monopole antenna with high band rejection and wide radiation patterns," IEEE Trans. Antennas Propag., Vol. 62, No. 9, 4816-4820, 2014.
doi:10.1109/TAP.2014.2330585

13. Abbosh, A. M. and andM. E. Bialkowshi, "Design of UWB planar band-notched antenna using parasitic elements," IEEE Trans. Antennas Propag., Vol. 57, No. 3, 796-799, 2009.
doi:10.1109/TAP.2009.2013449

14. Yadav, S., A. K. Gautam, and Kanaujia, "Design of miniaturized single band-notch micro strip antenna with enhanced UWB performance," Microw. Opt. Technol. Lett., Vol. 58, No. 6, 1494-1499, 2016.
doi:10.1002/mop.29819

15. Diego, C., C. Renato, B. Giorgi, and F. Antonio, "Circuit model and near-field behavior of a novel patch antenna for WWLAN applications," Microw. Opt. Technol. Lett., Vol. 49, No. 1, 97-100, 2007.
doi:10.1002/mop.22057