Vol. 157
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-11-15
The Factorization Method for Virtual Experiments Based Quantitative Inverse Scattering
By
Progress In Electromagnetics Research, Vol. 157, 121-131, 2016
Abstract
The concept of virtual experiments is based on the idea of solving the inverse scattering problem by processing a suitable recombination of the available data, instead of those arising from the measurements. By properly designing such experiments (and without additional measurements), it is possible to enforce some peculiar field's or contrast source's properties, which can be helpful to perform the inversion in a more simple and reliable way. In this paper, we show that the factorization method can be used as a tool to design the virtual experiments. In doing so, we also provide, for the first time, an insight into its physical meaning. As an example, we exploit the virtual experiments designed via FM as the backbone of a linearized inversion approach for quantitative imaging of non-weak targets.
Citation
Lorenzo Crocco, Loreto Di Donato, Ilaria Catapano, and Tommaso Isernia, "The Factorization Method for Virtual Experiments Based Quantitative Inverse Scattering," Progress In Electromagnetics Research, Vol. 157, 121-131, 2016.
doi:10.2528/PIER16072809
References

1. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, 1992.
doi:10.1007/978-3-662-02835-3

2. Cakoni, F. and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, 2006.

3. Potthast, R., "A survey on sampling and probe methods for inverse problems," Inv. Probl., Vol. 22, R1-R47, 2006.
doi:10.1088/0266-5611/22/2/R01

4. Colton, D. and A. Kirsch, "A simple method for solving inverse scattering problems in the resonance region," Inv. Probl., Vol. 12, 383-393, 1996.
doi:10.1088/0266-5611/12/4/003

5. Kirsch, A. and N. I. Grinberg, The Factorization Method for Inverse Problems, Cambridge, 2008.

6. Crocco, L., I. Catapano, L. Di Donato, and T. Isernia, "The linear sampling method as a way to quantitative inverse scattering," IEEE Trans. Antennas Propagat., Vol. 60, No. 4, 1844-1853, Apr. 2012.
doi:10.1109/TAP.2012.2186250

7. Di Donato, L. and L. Crocco, "Model-based quantitative cross-borehole GPR imaging via virtual experiments," IEEE Trans. Geosci. Remote Sens., Vol. 53, No. 8, 4178-4185, Aug. 2015.
doi:10.1109/TGRS.2015.2392558

8. Bevacqua, M. T., L. Crocco, L. Di Donato, and T. Isernia, "An algebraic solution method for nonlinear inverse scattering," IEEE Trans. Antennas Propagat., Vol. 63, No. 2, 601-610, Feb. 2015.
doi:10.1109/TAP.2014.2382114

9. Di Donato, L., M. T. Bevacqua, L. Crocco, and T. Isernia, "Inverse scattering via virtual experiments and contrast source regularization," IEEE Trans. Antennas Propagat., Vol. 63, No. 4, 1669-1677, Apr. 2015.
doi:10.1109/TAP.2015.2392124

10. Bevacqua, M. T., L. Crocco, L. Di Donato, and T. Isernia, "Microwave imaging of nonweak targets via compressive sensing and virtual experiments," IEEE Antennas Wireless Propagat. Lett., Vol. 14, 1035-1038, 2015.
doi:10.1109/LAWP.2014.2376612

11. Di Donato, L., R. Palmeri, G. Sorbello, T. Isernia, and L. Crocco, "A new linear distorted-wave inversion method for microwave imaging via virtual experiments," IEEE Trans. Microwave Th. Tech., Vol. 64, 2478-2488, 2016.
doi:10.1109/TMTT.2016.2584604

12. Arens, T., "Why linear sampling works," Inv. Probl., Vol. 20, 163-173, 2004.
doi:10.1088/0266-5611/20/1/010

13. Belkebir, K. and M. Saillard, "Guest editors’ introduction," Inv. Probl., Vol. 17, 1565, 2001.
doi:10.1088/0266-5611/17/6/301

14. Belkebir, K. and M. Saillard, "Testing inversion algorithms against experimental data: Inhomogeneous targets," Inv. Probl., Vol. 21, S1, 2005.

15. Crocco, L., L. Di Donato, I. Catapano, and T. Isernia, "An improved simple method for imaging the shape of complex targets," IEEE Trans. Antennas Propagat., Vol. 61, No. 2, 843-851, 2013.
doi:10.1109/TAP.2012.2220329

16. Hanson, G. W. and A. B. Yakovlev, Operator Theory for Electromagnetics, Springer-Verlag, 2002.
doi:10.1007/978-1-4757-3679-3

17. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, Institute of Physics, 1998.
doi:10.1887/0750304359

18. Catapano, I., L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Trans. Antennas Propagat., Vol. 55, 1431-1436, 2007.
doi:10.1109/TAP.2007.895563

19. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: Retrievable information and measurement strategies," Radio Sci., Vol. 32, 2123-2138, 1997.
doi:10.1029/97RS01826

20. Cabayan, H. S. and G. A. Deschamps, "Antenna synthesis and solution of inverse problems by regularization methods," IEEE Trans. Antennas Propagat., Vol. 20, No. 3, 1972.

21. Crocco, L. and T. Isernia, "Inverse scattering with real data: Detecting and imaging homogeneous dielectric objects," Inv. Probl., Vol. 17, No. 6, 1573, 2001.
doi:10.1088/0266-5611/17/6/302

22. Catapano, I., L. Crocco, M. D’Urso, and T. Isernia, "On the effect of support estimation and of a new model in 2D inverse scattering problems," IEEE Trans. Antennas Propagat., Vol. 55, 1895-1899, 2007.
doi:10.1109/TAP.2007.898647

23. Brignone, M., G. Bozza, A. Randazzo, M. Piana, and M. Pastorino, "A hybrid approach to 3D microwave imaging by using linear sampling and ACO," IEEE Trans. Antennas Propagat., Vol. 56, 3224-3232, 2007.

24. Di Donato, L., R. Palmeri, G. Sorbello, T. Isernia, and L. Crocco, "Assessing the capabilities of a new linear inversion method for quantitative microwave imaging," Int. J. Antenn. Propag., Vol. 2015, 9 pages, ID 403760, 2015.

25. Wang, W. and S. Zhang, "Unrelated illumination method for electromagnetic inverse scattering of inhomogeneous lossy dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 40, 1292-1296, 1992.

26. El-Babli, I. and A. Sebak, "Unrelated illumination approach for the reconstruction of three dimensional inhomogeneous dielectric bodies," Journal of Electromagnetic Waves and Applications, Vol. 12, 371-385, 1998.
doi:10.1163/156939398X00700