Vol. 51
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-11-04
Radiation Field and Optical Coupling Evaluation Using a New Mathematical Model
By
Progress In Electromagnetics Research M, Vol. 51, 175-183, 2016
Abstract
The mathematical model elaborated in this paper is based on the concept of intrinsic modes in order to analyze and synthesize optical wave propagation along a non-uniform optical structure which is used in integrated optics communication as tapered optical coupler. The new mathematical model is simply developed by introducing modifications to the intrinsic integral, and its numerical evaluation illustrate the electromagnetic field distribution inside a taper thin film and also outside the waveguide constituted by the substrate and the cladding of lower refractive index. The proposed method permits efficiently tracking the behaviour of the optical waves both inside and outside of the optical waveguide, and quantifying the radiation and optical coupling occurring from the taper thin film of higher refractive index to adjacent mediums until a total energy transfer; this happens at thicknesses lower than waveguide cutoff thickness of each mode. The new model can be applied to all types of tapered optical coupler, having a high or low contrast of the refractive indexes, and different wedge angles formed by the different mediums of the waveguide.
Citation
Mansour Bacha, and Abderrahmane Belghoraf, "Radiation Field and Optical Coupling Evaluation Using a New Mathematical Model," Progress In Electromagnetics Research M, Vol. 51, 175-183, 2016.
doi:10.2528/PIERM16072507
References

1. Lifante, G., Integrated Photonics: Fundamentals, John Willey & Sons Ltd., 2003.
doi:10.1002/0470861401

2. Boudrioua, A., Photonic Waveguides Theory and Applications, ISTE Ltd, 2009.
doi:10.1002/9780470611142

3. Bacha, M. and A. Belghoraf, "Evaluation of optical propagation and radiation in optical waveguide using a numerical method," Chinese Optics Letters, Vol. 12, No. 7, 070801-4, 2014.
doi:10.3788/COL201412.070801

4. Luyssaert, B., et al. "Efficient nonadiabatic planar waveguide tapers," Journal of Lightwave Technology, Vol. 23, No. 8, 2462-2468, 2005.
doi:10.1109/JLT.2005.850795

5. Debnath, K., et al. "Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique," Frontiers in Materials, Vol. 3, 1-7, Article 10, 2016.

6. Subbaraman, H., et al. "Recent advances in silicon-based passive and active optical interconnects," Optics Express, Vol. 23, No. 3, 2487-2510, 2015.
doi:10.1364/OE.23.002487

7. Yoo, K. and J.-H. Lee, "Design of a high-efficiency fiber-to-chip coupler with reflectors," EIE Transactions on Smart Processing and Computing, Vol. 5, No. 2, 123-128, 2016.
doi:10.5573/IEIESPC.2016.5.2.123

8. Okamoto, K., Fundamentals of Optical Waveguides, Elsevier Inc., 2006.

9. Whang, A. J., et al. "Innovative coupler design based on a tapered light pipe with lens," Chinese Optics Letters, Vol. 11, No. 12, 1222011-1222014, 2013.

10. Kamel, A. and L. B. Fielsen, "Spectral theory of sound propagatin in an ocean channel with weakly sloping bottom," J. Acoust. Soc. Am., Vol. 73, No. 4, 1120, 1983.
doi:10.1121/1.389282

11. Arnold, J. and A. Ansbro, "Intrinsic modes in wedge shaped oceans," Journal de Physique Colloques, Vol. 51, No. C2, C2-953-C2-956, 1990.

12. Arnold, J. M., A. Belghoraf, and A. Dendane, "Intrinsic mode theory of tapered optical waveguide," IEE Proceedings, Vol. 132, No. 6, 314-318, 1985.

13. Dendane, A. and J. M. Arnold, "Beam radiation from tapered waveguides," IEEE Journal of Quantum Electrons, Vol. 22, No. 9, 1551-1556, 1986.
doi:10.1109/JQE.1986.1073156

14. Belghoraf, A., "A simplified approach to analysing non uniform structure in integrated optics," A.M.S.E. Periodicals: Modelling, Measurement and Control. A, Vol. 74, No. 5, 61-71, 2001.

15. Belghoraf, A., "Numerical comparison between intrinsic and adiabatic modes for tapered optical waveguide in optical communication," A.M.S.E. Periodicals: Modelling, Measurement and Control. A, Vol. 45, No. 4, 21-42, 1992.

16. Cada, M., et al. "Intrinsic modes in tapered optical waveguides," IEEE Journal of Quantum Electronics, Vol. 24, No. 5, 1988.
doi:10.1109/3.191

17. Cada, M., et al. "A substantially improved treatment of intrinsic modes in tapered optical waveguides," IEEE Journal of Quantum Electronics, Vol. 25, No. 5, 1989.
doi:10.1109/3.27983

18. Prajzler, V., H. Tuma, J. Spirkova, et al. "Design and modeling of symmetric three branch polymer planar optical power dividers," Radioengineering, Vol. 22, No. 1, 233-239, 2013.

19. Kawano, K. and T. Kitoh, Introduction to Optical Waveguide Analysis, John Willey & Sons Ltd., 2001.
doi:10.1002/0471221600.ch6

20. Yip, G. L., "Simulation and design of integrated optical waveguide devices by the BPM," Integrated Optical Circuits SPIE, Vol. 1583, 240-248, 1991.
doi:10.1117/12.50894

21. Han, Y. T., J. U. Shin, D. J. Kim, et al. "A rigorous 2D approximation technique for 3D waveguide structures for BPM calculations," ETRI Journal, Vol. 25, No. 6, 535-537, 2003.
doi:10.4218/etrij.03.0203.0020

22. Ismail, M. M. and M. N. Shah Zainuddin, "Numerical method approaches in optical waveguide modelling," Applied Mechanics and Materials, Vol. 52-54, 2133-2137, 2011.
doi:10.4028/www.scientific.net/AMM.52-54.2133

23. Bacha, M. and A. Belghoraf, "Analysis of electromagnetic Wave propagation along optical waveguide," Int. Rev. on Mod. and Simul. (I.RE.MO.S), Vol. 6, 1624, 2013.

24. Belghoraf, A. and M. Bacha, "Mathematical model for analysing a tapered optical coupler," International Research Journal of Engineering and Technology (IRJET), Vol. 3, No. 5, 3049-3052, 2016.

25. Tien, P. K., G. Smolinsky, and R. J. Martin, "Radiation fields of a tapered film and a novel film-to-fiber coupler," IEEE Trans. Microwave Theory Tech., Vol. 23, 79-85, 1975.
doi:10.1109/TMTT.1975.1128507

26. Rumao, T., X. Wang, H. Xiao, et al. "Coherent beam combination of fiber lasers with a strongly confined tapered self-imaging waveguide: Theoretical modelling and simulation," Photon. Res., Vol. 1, No. 4, 2013.

27. Olver, F. W. J., Asymptotic and Special Functions, Academic, 1974.

28. Liu, J.-M., Photonic Devices, Cambridge University Press, 2005.
doi:10.1017/CBO9780511614255