Vol. 70
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-10-20
Cogging Torque and Torque Ripple in a Direct-Drive Interior Permanent Magnet Generator
By
Progress In Electromagnetics Research B, Vol. 70, 73-85, 2016
Abstract
This paper investigates the cogging torque and torque ripple in high pole number interior permanent magnet generators, designed for direct-drive applications. Two interior permanent magnet rotor topologies --- flat-shaped and V-shaped were considered with distributed wound and fractional slot concentrated wound stators. A comparison of torque performances was made between distributed wound and fractional-slot concentrated wound generators. Cogging torque was minimized by finding an optimum magnet pole arc length and torque ripples were minimized by finding optimum slotopening and flux barrier shape. Design analysis was carried out in finite element models. It was found that flat-shaped rotor topology in the fractional slot concentrated wound stator can provide the best torque performance regarding low cogging torque and torque ripple. This finding was verified in constructed prototype machine.
Citation
Rukmi Dutta, Kazi Ahsanullah, and Faz Rahman, "Cogging Torque and Torque Ripple in a Direct-Drive Interior Permanent Magnet Generator," Progress In Electromagnetics Research B, Vol. 70, 73-85, 2016.
doi:10.2528/PIERB16072001
References

1. Morandin, M., E. Fornasiero, S. Bolognani, and N. Bianchi, "Torque and power rating of a wind- power PM generator drive for maximum profit-to-cost ratio," IEEE Transactions on Industry Applications, Vol. 49, 866-872, 2013.
doi:10.1109/TIA.2013.2244191

2. Dutta, R., L. Chong, and M. F. Rahman, "Design and experimental verification of an 18-Slot/14- pole fractional-slot concentrated winding interior permanent magnet machine," IEEE Trans. Energy Convers., Vol. 28, 181-190, 2013.
doi:10.1109/TEC.2012.2229281

3. El-Refaie, A. M., "Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges," IEEE Trans. Ind. Electron., Vol. 57, 107-121, 2010.
doi:10.1109/TIE.2009.2030211

4. Cros, J. and P. Viarouge, "Synthesis of high performance PM motors with concentrated windings," IEEE Trans. Energy Convers., Vol. 17, 248-253, 2002.
doi:10.1109/TEC.2002.1009476

5. Damiano, A., I. Marongiu, A. Monni, and M. Porru, "Design of a 10MW multi-phase PM synchronous generator for direct-drive wind turbines," Industrial Electronics Society, IECON 2013 --- 39th Annual Conference of the IEEE, 5266-5270, 2013.
doi:10.1109/IECON.2013.6699991

6. Chang Seop, K. and S. Jin-Soo, "New cogging-torque reduction method for brushless permanent-magnet motors," IEEE Trans. Magn., Vol. 39, 3503-3506, 2003.
doi:10.1109/TMAG.2003.819473

7. Sopanen, J., V. Ruuskanen, J. Nerg, and J. Pyrhonen, "Dynamic torque analysis of a wind turbine drive train including a direct-driven permanent-magnet generator," IEEE Trans. Energy Convers., Vol. 58, 3859-3867, 2011.

8. Cistelecan, M. V., M. Popescu, and M. Popescu, "Study of the number of slots/pole combinations for low speed permanent magnet synchronous generators," Proc. IEMDC, 1616-1620, 2007.

9. Ge, X., G. Han, Z. Cheng, and Z. Wang, "Research of cogging torque in the brushless DC motor with fractional ratio of slots and poles," Proc. ICEMS, Vol. 1, 76-80, 2005.

10. Wu, D. and Z. Q. Zhu, "Design tradeoff between cogging torque and torque ripple in fractional slot surface-mounted permanent magnet machines," IEEE Trans. Magn., Vol. 51, 1-4, 2015.

11. Sun, A., J. Li, R. Qu, and D. Li, "Effect of multilayer windings on rotor losses of interior permanent magnet generator with fractional-slot concentrated-windings," IEEE Trans. Magn., Vol. 50, 1-4, 2014.

12. Hong, C., Q. Ronghai, L. Jian, and L. Dawei, "Demagnetization performance of a 7 MW interior permanent magnet wind generator with fractional-slot concentrated windings," IEEE Trans. Magn., Vol. 51, 1-4, 2015.

13. Valavi, M., A. Nysveen, R. Nilssen, R. D. Lorenz, and T. Rolvag, "Influence of pole and slot combinations on magnetic forces and vibration in low-speed PM wind generators," IEEE Trans. Magn., Vol. 50, 1-11, 2014.
doi:10.1109/TMAG.2013.2293124

14. Guemes, J. A., A. A. Iraolagoitia, J. J. Del Hoyo, and P. Fernandez, "Torque analysis in permanent-magnet synchronous motors: A comparative study," IEEE Trans. Energy Convers., Vol. 26, 55-63, 2011.
doi:10.1109/TEC.2010.2053374

15. Zhu, Z. Q. and D. Howe, "Influence of design parameters on cogging torque in permanent magnet machines," IEEE Trans. Energy Convers., Vol. 15, 407-412, 2000.
doi:10.1109/60.900501

16. Bianchi, N. and S. Bolognani, "Design techniques for reducing the cogging torque in surface-mounted PM motors," IEEE Trans. Ind. Appl., Vol. 38, 1259, 2002.
doi:10.1109/TIA.2002.802989

17. Bianchi, N., M. Degano, and E. Fornasiero, "Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors," IEEE Trans. Ind. Appl., Vol. 51, 187-195, 2015.
doi:10.1109/TIA.2014.2327143

18. Un-Jae, S., C. Yon-Do, C. Jae-Hak, H. Pil-Wan, K. Dae-hyun, and L. Ju, "A technique of torque ripple reduction in interior permanent magnet synchronous motor," IEEE Trans. Magn., Vol. 47, 3240-3243, 2011.
doi:10.1109/TMAG.2011.2150742

19. Han, S.-H., T. M. Jahns, W. L. Soong, M. K. Guven, and M. S. Illindala, "Torque ripple reduction in interior permanent magnet synchronous machines using stators with odd number of slots per pole pair," IEEE Trans. Energy Convers., Vol. 25, 118-127, 2010.
doi:10.1109/TEC.2009.2033196

20. Bianchi, N., S. Bolognani, M. D. Pre, and G. Grezzani, "Design considerations for fractional-slot winding configurations of synchronous machines," IEEE Trans. Ind. Appl., Vol. 42, 997-1006, 2006.
doi:10.1109/TIA.2006.876070

21. Grop, H., J. Soulard, and H. Persson, "Theoretical investigation of fractional conductor windings for AC-machines --- definition, air-gap m.m.f. and winding factors," Proc. ICEM, 1-6, 2008.

22. Evans, D., Z. Azar, L. J. Wu, and Z. Q. Zhu, "Comparison of optimal design and performance of PM machines having non-overlapping windings and different rotor topologies," IET Proc. PEMD, 1-7, 2010.

23. Islam, M. S., R. Islam, and T. Sebastian, "Experimental verification of design techniques of permanent-magnet synchronous motors for low-torque-ripple applications," IEEE Trans. Ind. Appl., Vol. 47, 88-95, 2011.
doi:10.1109/TIA.2010.2091612

24. Zhu, Z. Q., "A simple method for measuring cogging torque in permanent magnet machines," Proc. IEEE Conf. PES, 1-4, 2009.

25. Islam, M. S., S. Mir, and T. Sebastian, "Issues in reducing the cogging torque of mass-produced permanent-magnet brushless DC motor," IEEE Trans. Ind. Appl., Vol. 40, 813-820, 2004.
doi:10.1109/TIA.2004.827469

26. Heins, G., M. Thiele, and T. Brown, "Accurate torque ripple measurement for PMSM," IEEE Trans. Instrumentation and Measurement, Vol. 60, 3868-3874, 2011.
doi:10.1109/TIM.2011.2138350