Vol. 157
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-11-03
Retro-Directive Beamforming Versus Retro-Reflective Beamforming with Applications in Wireless Power Transmission
By
Progress In Electromagnetics Research, Vol. 157, 79-91, 2016
Abstract
This paper studies the difference between retro-directive beamforming technique and retro-reflective beamforming technique in the context of wireless power transmission applications. In all of our studies, a wireless power receiver broadcasts continuous-wave pilot signal; the wireless power transmitter receives and analyzes the pilot signal; finally, the wireless power transmitter transmits continuous-wave power with phase profile conjugate to that of the received pilot signal. Our study demonstrates that a linear equi-spaced array configuration employed by the wireless power transmitter behaves as a retro-directive beamformer when the wireless power receiver resides in the far-zone of the wireless power transmitter, whereas it behaves as a retro-reflective beamformer when the wireless power receiver is not in the far-zone. This paper further investigates two types of array configurations other than linear equi-spaced array when the wireless power transmitter behaves as a retro-reflective beamformer. One is a V-shaped array, which is obtained by deforming the linear equi-spaced array to a ``V'' shape. The other is termed ``perturbed array:'' on the basis of linear equi-spaced array, all the elements' locations are perturbed randomly. It is particularly interesting to compare the equi-spaced array and perturbed array. When the wireless power receiver resides 5 or 6 wavelengths away, a 6-element equi-spaced array and a 6-element perturbed array produce the same power level at the near-zone focal point, but the maximum far-zone gain associated with the perturbed array is 1 dB lower than the equi-spaced array. All the conclusions drawn in this paper are supported by numerical results as well as experimental results.
Citation
Xin Wang, Bodong Ruan, and Mingyu Lu, "Retro-Directive Beamforming Versus Retro-Reflective Beamforming with Applications in Wireless Power Transmission," Progress In Electromagnetics Research, Vol. 157, 79-91, 2016.
doi:10.2528/PIER16071707
References

1. Strassner, B. and K. Chang, "Microwave power transmission: Historical milestones and system components," Proceedings of the IEEE, Vol. 101, No. 6, 1379-1396, June 2013.
doi:10.1109/JPROC.2013.2246132

2. Visser, H. J. and R. J. M. Vullers, "RF energy harvesting and transport for wireless sensor network applications: Principles and requirements," Proceedings of the IEEE, Vol. 101, No. 6, 1410-1423, June 2013.
doi:10.1109/JPROC.2013.2250891

3. Zhai, H., H. K. Pan, and M. Lu, "A practical wireless charging system based on ultra-wideband retro-reflective beamforming," IEEE International Antennas and Propagation Symposium, Toronto, Canada, July 2010.

4. Mazurenko, O. and Y. Yakornov, "Focused arrays beamforming," Behaviour of Electromagnetic Waves in Different Media and Structures, 419-440, A. Akdagli, Ed., InTech, Rijeka, 2011.

5. Kildal, P.-S. and M. M. Davis, "Characterization of near-field focusing with application to low altitude beam focusing of the Arecibo tri-reflector system," IEE Proceedings --- Microwaves Antennas and Propagation, Vol. 143, No. 4, 284-292, August 1996.
doi:10.1049/ip-map:19960388

6. Reid, D. R. and G. S. Smith, "A comparison of the focusing properties of a Fresnel zone plate with a doubly-hyperbolic lens for application in a free-space, focused beam measurement system," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, 499-507, February 2009.
doi:10.1109/TAP.2008.2011392

7. Chou, H.-T., T.-M. Hung, N.-N. Wang, H.-H. Chou, C. Tung, and P. Nepa, "Design of a near-field focused reflectarray antenna for 2.4 GHz RFID reader applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 1013-1018, March 2011.
doi:10.1109/TAP.2010.2103030

8. Karimkashi, S. and A. A. Kishk, "Focusing properties of Fresnel zone plate lens antennas in the near-field region," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1481-1487, May 2011.
doi:10.1109/TAP.2011.2123069

9. Gomez-Tornero, J. L., D. Blanco, E. Rajo-Iglesias, and N. Llombart, "Holographic surface leaky-wave lenses with circularly-polarized focused near-fields --- Part I: Concept, design and analysis theory," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 3475-3485, July 2013.
doi:10.1109/TAP.2013.2257644

10. Monnai, Y. and H. Shinoda, "Focus-scanning leaky-wave antenna with electronically pattern-tunable scatterers," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 6, 2070-2077, June 2011.
doi:10.1109/TAP.2011.2143680

11. Okuyama, T., Y. Monnai, and H. Shinoda, "20-GHz focusing antennas based on corrugated waveguide scattering," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1284-1286, 2013.
doi:10.1109/LAWP.2013.2284278

12. Buffi, A., P. Nepa, and G. Manara, "Design criteria for near-field-focused planar arrays," IEEE Antennas and Propagation Magazine, Vol. 54, 40-50, 2012.
doi:10.1109/MAP.2012.6202511

13. Tuan, S.-C. and H.-T. Chou, "Analytic analysis of transient radiation from phased array antennas in the near- and far-field focus applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2519-2531, May 2013.
doi:10.1109/TAP.2013.2244549

14. Leon, G. and F. Las-Heras, "Fresnel-zone-based focused planar array," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 165-168, 2014.
doi:10.1109/LAWP.2014.2299405

15. Stephan, K. D., J. B. Mead, D. M. Pozar, L. Wang, and J. A. Pearce, "A near field focused microstrip array for a radiometric temperature sensor," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1199-1203, April 2007.
doi:10.1109/TAP.2007.893429

16. Bogosanovic, M. and A. G. Williamson, "Microstrip antenna array with a beam focused in the near-field zone for application in noncontact microwave industrial inspection," IEEE Transactions on Instrumentation and Measurement, Vol. 56, No. 6, 2186-2195, December 2007.
doi:10.1109/TIM.2007.907954

17. Buffi, A., A. A. Serra, P. Nepa, H.-T. Chou, and G. Manara, "A focused planar microstrip array for 2.4 GHz RFID readers," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1536-1544, May 2010.
doi:10.1109/TAP.2010.2044331

18. Karimkashi, S. and A. A. Kishk, "Focused microstrip array antenna using a Dolph-Chebyshev near-field design," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 12, 3813-3820, December 2009.
doi:10.1109/TAP.2009.2033435

19. Alvarez, J., R. G. Ayestaran, G. Leon, L. F. Herran, A. Arboleya, J. A. Lopez-Fernandez, and F. Las-Heras, "Near field multifocusing on antenna arrays via non-convex optimisation," IET Microwaves, Antennas & Propagation, Vol. 8, No. 10, 754-764, July 2014.
doi:10.1049/iet-map.2013.0563

20. Siragusa, R., P. Lemaitre-Auger, and S. Tedjini, "Tunable near-field focused circular phase-array antenna for 5.8-GHz RFID applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 33-36, 2011.
doi:10.1109/LAWP.2011.2108632

21. Wang, X., S. Sha, J. He, L. Guo, and M. Lu, "Wireless power delivery to low-power mobile devices based on retro-reflective beamforming," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 919-922, 2014.
doi:10.1109/LAWP.2014.2322493

22. He, J., X. Wang, L. Guo, S. Shen, and M. Lu, "A distributed retro-reflective beamformer for wireless power transmission," Microwave and Optical Technology Letters, Vol. 57, No. 8, 1873-1876, August 2015.
doi:10.1002/mop.29209

23. Wang, X., X. Hou, L. Wang, and M. Lu, "Employing phase-conjugation antenna array to beam microwave power from satellite to earth," IEEE International Conference on Wireless for Space and Extreme Environments, Orlando, FL, December 2015.

24. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley-Interscience, 2005.