Vol. 49
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-09-11
Fast Direct Solution of Composite Conducting-Dielectric Arrays Using Sherman-Morrison-Woodbury Algorithm
By
Progress In Electromagnetics Research M, Vol. 49, 203-209, 2016
Abstract
In this paper, the Sherman-Morrison-Woodbury (SMW) Formula-based algorithm (SMWA) is used to enable the fast direct solution of conducting-dielectric arrays. To speed up the direct solution of the matrix equation, the dense impedance matrix is transformed into a product of several block diagonal matrices via the SMW formula. In the grouping process, the situation that the elements of an array simultaneously belong to two different subgroups at peer level is avoided in order to promote the efficiency. The SMWA conducts the calculation with a respectable reduction in the computational time as well as memory.
Citation
Yang Zhang, Xinlei Chen, Chao Fei, Zhuo Li, and Chang Qing Gu, "Fast Direct Solution of Composite Conducting-Dielectric Arrays Using Sherman-Morrison-Woodbury Algorithm," Progress In Electromagnetics Research M, Vol. 49, 203-209, 2016.
doi:10.2528/PIERM16071202
References

1. Aksun, M. I., A. Alparslan, and E. P. Karabulut, "Determining the effective constitutive parameters of finite periodic structures: Photonic crystals and metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 6, 1423-1434, Jun. 2008.
doi:10.1109/TMTT.2008.923870

2. Wu, T. X. and D. L. Jaggard, "Scattering of chiral periodic structure," IEEE Trans. Antennas Propag., Vol. 52, 1859-1870, Jul. 2004.

3. Gibson, W. C., The Method of Moments in Electromagnetics, CRC Press, 2007.
doi:10.1201/9781420061468

4. Lu, C. C. and W. C. Chew, "A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets," IEEE Trans. Antennas Propag., Vol. 48, No. 12, 1866-1868, Dec. 2000.
doi:10.1109/8.901277

5. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

6. Ewe, W. B., L. W. Li, and M. S. Leong, "Fast solution of mixed dielectric/conducting scattering problem using volume-surface adaptive integral method," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 3071-3077, 2004.
doi:10.1109/TAP.2004.835147

7. Nie, X. C., N. Yuan, L.W. Li, Y. B. Gan, and T. S. Yeo, "A fast volume-surface integral equation solver for scattering from composite conducting-dielectric objects," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 818-824, 2005.
doi:10.1109/TAP.2004.841323

8. Chen, X., C. Gu, J. Ding, Z. Li, and Z. Niu, "Multilevel fast adaptive cross-approximation algorithm with characteristic basis functions," IEEE Trans. Antennas Propag., Vol. 63, No. 9, 3994-4002, Sep. 2015.
doi:10.1109/TAP.2015.2447033

9. Kong, W. Y., J. Bremer, and V. Rokhlin, "An adaptive fast direct solver for boundary integral equations in two dimensions," Applied and Computational Harmonic Analysis, Vol. 31, No. 3, 346-369, 2011.
doi:10.1016/j.acha.2011.01.008

10. Ambikasaram, S. and E. Darve, "An O(NlogN) fast direct solver for partial hierarchically semi-separable matrices with application to radial basis function interpolation," Journal of Scientific Computing, Vol. 57, No. 3, 477-501, 2013.
doi:10.1007/s10915-013-9714-z

11. Chen, X., C. Gu, Z. Niu, and Z. Li, "Direct solution of MoM matrix equation using Sherman-Morrison-Woodbury formula-based algorithm with ACA-SVD," Asia-Pacific Microwave Conference, Dec. 2015.

12. Chen, X., C. Gu, Z. Li, and Z. Niu, "Accelerated direct solution of electromagnetic scattering via characteristic basis function method with Sherman-Morrison-Woodbury formula-based algorithm," IEEE Trans. Antennas Propag., to be published (Early Access), DOI 10.1109/TAP.2016.2587743.

13. Zhang, Y., X. Chen, C. Fei, Z. Li, and C. Gu, "Fast direct solution of dielectric array using adaptive cross approximation with Sherman-Morrison-Woodbury formula," 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), 171-172, Jul. 2016.

14. Hager, W., "Updating the inverse of a matrix," SIAM Rev., Vol. 31, No. 2, 221-239, 1989.
doi:10.1137/1031049

15. Golub, G. H. and C. F. Van Loan, Matrix Computations, The Johns Hopkins Univ., Press, 1996.

16. Zhao, K., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 763-773, 2005.
doi:10.1109/TEMC.2005.857898

17. Kobidze, G. and B. Shanker, "Integral equation based analysis of scattering from 3-D inhomogeneous anisotropic bodies," IEEE Trans. Antennas and Propag., Vol. 52, No. 10, 2650-2658, Oct. 2004.
doi:10.1109/TAP.2004.834439

18. Chen, X., C. Gu, Z. Niu, and Z. Li, "Fast solution of volume-surface integral equation for scattering from composite conducting-dielectric targets using multilevel fast dipole method," International Journal of RF and Microwave Computer-aided Engineering, Vol. 25, No. 5, 624-631, Sep. 2012.
doi:10.1002/mmce.20620

19. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas and Propag., Vol. 30, No. 2, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

20. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. Antennas and Propag., Vol. 32, 77-85, 1984.
doi:10.1109/TAP.1984.1143193