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Fast Direct Solution of Composite Conducting-Dielectric Arrays

Using Sherman-Morrison-Woodbury Algorithm

Yang Zhang1, *, Xinlei Chen1, 2, Chao Fei1, Zhuo Li1, 2, and Changqing Gu1

Abstract—In this paper, the Sherman-Morrison-Woodbury (SMW) Formula-based algorithm (SMWA)
is used to enable the fast direct solution of conducting-dielectric arrays. To speed up the direct solution
of the matrix equation, the dense impedance matrix is transformed into a product of several block
diagonal matrices via the SMW formula. In the grouping process, the situation that the elements of an
array simultaneously belong to two different subgroups at peer level is avoided in order to promote the
efficiency. The SMWA conducts the calculation with a respectable reduction in the computational time
as well as memory.

1. INTRODUCTION

This paper focuses on the electromagnetic scattering from composite conducting-dielectric arrays, which
is widely used in microwave engineering and antenna designs [1, 2]. To perform accurate numerical
analysis, the method of moments (MoM) [3] is a good choice. Compared with the surface integral
equation (SIE), the volume-surface integral equation (VSIE) [4] is more advantageous for analyzing
targets including inhomogeneous anisotropic dielectrics.

In the MoM, the VSIE is transformed into a dense matrix equation. Iterative solvers require O(N2)
storage and computational time for a matrix-vector product (MVP) at iterations, where N is the number
of unknowns. Thus, to reduce the complexity of MVP, many fast iterative solvers have been proposed
such as the multilevel fast multipole algorithm (MLFMA) [5], adaptive integral method (AIM) [6],
pre-corrected fast Fourier transform (P-FFT) [7], and multilevel fast adaptive cross approximation
(MLFACA) [8]. Nevertheless, these fast iterative solvers usually involve a large quantity of iteration
steps when solving the VISE.

In order to avoid the convergence problem, direct solvers such as LU decomposition can be
employed. However, the conventional direct methods are very time-consuming with computational
complexity of O(N3). To mitigate this problem, in this paper, the fast direct method [9–13] based on
the Sherman-Morrison-Woodbury (SMW) formula [14, 15] is employed. The fast direct solver is termed
as SMW algorithm (SMWA) for the sake of brevity. Firstly, the SMWA hierarchically divides the MoM
dense impedance matrix based on the binary tree. Then, all the off-diagonal submatrices are compressed
by the adaptive cross approximation (ACA) [8, 16]. Finally, the matrix is transformed into a product of
several block diagonal matrices via the SMW formula, so that the solution of the matrix equation can
be efficiently calculated through these block diagonal matrices.

The article is organized as follows. In Section 2, the VSIE is established to analyze the composite
conducting-dielectric arrays. In Section 3, the SWMA algorithm is presented in detail to illustrate how
this method speeds up the calculation. In Section 4, numerical results are given to verify the efficiency
and accuracy of the algorithm.
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2. BASIC PRINCIPLE OF VSIE

In this section, the coupled volume-surface integral equation (VSIE) [4, 17, 18] is presented to calculate
the electromagnetic scattering from composite conducting-dielectric arrays. Let S denote all the
conducting surfaces and V denote the dielectric volumes, the boundary conditions of the VSIE can
be expressed as [18] (

Ei(r) + Es(r)
)
|tan = 0, r ∈ S (1)

E(r) = ¯̄ε−1(r) ·D(r) = Ei(r) + Es(r), r ∈ V (2)
where Ei(r) is the incident filed and Es(r) is the scattering filed. ¯̄ε(r) is the permittivity tensor. D(r) is
the electric flux density. Es(r) can be expressed as the sum of the scattering filed of dielectric volumes
Es

v(r) and the conducting surfaces Es
s(r).
Es

s(r) = −jωAs(r) −∇φs(r), (3)
Es

v(r) = −jωAv(r) −∇φv(r), (4)
where Au(r) and φu(r) for u = s, v represent the vector potential functions and scalar potential
functions, respectively. In order to solve Eqs. (1) and (2), a set of Rao-Wilton-Glisson (RWG) [19]
and Schaubert-Wilton-Glisson (SWG) [20] basis functions are used to discretize the conducting region
and the dielectric region, respectively. The unknown surface and volume current can be represented by
[18]

Js(r) =
Ns∑
n=1

Isnfsn(r), (5)

Jv(r) =
Nv∑
n=1

Ivn ¯̄κvn · fvn(r), (6)

where fsn(r) is the n-th RWG basis function and fvn(r) is n-th SWG basis function, Ns is the number of
RWG basis functions and Nv is the number of SWG basis functions. The contrast ratio ¯̄κ(r) is defined
as ¯̄κ(r) = ¯̄I − ¯̄εr

−1(r) [17], in which ¯̄εr(r) is the relative permittivity tensor of the electric anisotropic
media, and ¯̄I is the unit tensor. ¯̄κvn is the contrast ratio in the n-th SWG basis function. Isn and
Ivn are the unknown coefficients. Substituting Eqs. (3)–(6) into Eqs. (1) and (2), we have the MoM
impedance equation, by using the Galerkin’s method, as

Ns∑
n=1

IsnZss
mn +

Nv∑
n=1

IvnZvv
mn =

〈
fsm(r),Ei(r)

〉
, (7)

Ns∑
n=1

IsnZss
mn +

Nv∑
n=1

IvnZvv
mn =

〈
fvm(r),Ei(r)

〉
, (8)

where
Zss

mn = jω 〈fsm(r),Asn(r)〉 + 〈fsm(r),∇ϕsn(r)〉 , (9)
Zsv

mn = jω 〈fsm(r),Avn(r)〉 + 〈fsm(r),∇ϕvn(r)〉 , (10)
Zvs

mn = jω 〈fvm(r),Asn(r)〉 + 〈fvm(r),∇ϕsn(r)〉 , (11)

Zvv
mn = jω 〈fvm(r),Avn(r)〉 + 〈fvm(r),∇ϕvn(r)〉 +

1
jω

〈
fvm(r), ¯̄ε−1(r) · fvn(r)

〉
. (12)

The aforementioned equations set can be written in the matrix form(
Zss Zsv

Zvs Zvv

)(
Is

Iv

)
=

(
Vs

Vv

)
. (13)

In the description above, Zsv and Zvs denote the interaction between metallic surface and dielectric
body. Zvs is the impedance matrix with the source point in dielectric body and the field point in
conducting surface. Zsv is the complement. Vs and Vv are the voltage vector. It is worth mentioning
that metallic parts and dielectric media are permitted to touch.
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3. FAST SOLUTION VIA SMWA

The SMWA is an efficient direct solver proposed in [9, 10]. In our recent work, it has been employed to
accelerate the direct solution of the SIE [11, 12] and the volume integral equation (VIE) [13]. In this
paper, the SWMA is extended to solve the VSIE. To implement the SMWA [9, 10], the entire target
needs multi-level grouping first. The array elements are divided into 2L groups by the L-level binary
tree according to the positions of their barycenters. For instance, the first division divides all array
elements into 2 groups, ensuring that the number of basis functions in each group are approximately
equal. The next division divides each of the previous 2 subgroups into 2 groups, respectively, and so
on. In the grouping process, we avoid the situation that the elements of an array simultaneously belong
to two different subgroups at peer level. Therefore, the effective rank of impedance matrix associated
with adjacent groups is relatively small.

Once the impedance matrix is constructed, our goal is to calculate its inverse. In the SMWA, the
impedance matrix Z is transformed into the product of L + 1 block diagonal matrices.

Z ≈ ZLZL−1 . . .Z1Z0, (14)

where Zl (0 ≤ l ≤ L) is the block diagonal matrix of the product of Z−1
l+1 . . .Z−1

L Z at the l-th level. As
a result, the solution is transformed into solving the inverse of every block diagonal matrix as

Z−1 ≈ Z−1
0 Z−1

1 . . .Z−1
L−1Z

−1
L . (15)

For the fact that these diagonal matrices present in special forms, their inverses can be efficiently
calculated according to the SMW formula [14, 15].

Figure 1. The pictorial representations of Z and its compression results

To clearly describe the acceleration progress, the implementation of a simple 2-level SMWA is
presented as follows. As shown in Fig. 1, the impedance matrix Z is divided by a 2-level binary tree.
The diagonal blocks “X′′ are the self-impedance matrices of each group at the finest level, and the rest
mutual-impedance matrices “Y′′ at different levels are at low rank and can be compressed by ACA [8, 16]
as

Y(l)
i ≈ U(l)

i V(l)
i . (16)

The impendence matrix after the ACA compression can be written as

Z =

⎡
⎢⎢⎢⎢⎣

[
X(2)

0 U(2)
0 V(2)

0

U(2)
1 V(2)

1 X(2)
1

]
U(1)

0 V(1)
0

U(1)
1 V(1)

1

[
X(2)

2 U(2)
2 V(2)

2

U(2)
3 V(2)

3 X(2)
3

]
⎤
⎥⎥⎥⎥⎦ . (17)

First, Z2 is the block diagonal matrix of Z at the 2nd level and is expressed as

Z2 =

⎡
⎢⎢⎢⎣

X(2)
0

X(2)
1

X(2)
2

X(2)
3

⎤
⎥⎥⎥⎦ . (18)



206 Zhang et al.

Then, we compute the product of Z−1
2 Z as

Z−1
2 Z =

⎡
⎢⎢⎢⎢⎣

[
1 U̇(2)

0 V(2)
0

U̇(2)
1 V(2)

1 1

]
U̇(1)

0 V(1)
0

U̇(1)
1 V(1)

1

[
1 U̇(2)

2 V(2)
2

U̇(2)
3 V(2)

3 1

]
⎤
⎥⎥⎥⎥⎦ , (19)

where 1 denotes the identity matrix,

U̇(2)
i =

(
X(2)

i

)−1
U(2)

i , (20)

for i = 0, 1, 2, 3.

U̇(1)
i =

⎡
⎣

(
X(2)

2i

)−1

(
X(2)

2i+1

)−1

⎤
⎦U(1)

i , (21)

for i = 0, 1. Thus, Z1 is the block diagonal matrix of Z−1
2 Z at the 1st level and is written as

Z1 =

⎡
⎢⎢⎢⎢⎣

[
1 U̇(2)

0 V(2)
0

U̇(2)
1 V(2)

1 1

]
[

1 U̇(2)
2 V(2)

2

U̇(2)
3 V(2)

3 1

]
⎤
⎥⎥⎥⎥⎦ . (22)

Finally, Z0 is the block diagonal matrix of Z−1
1

(
Z−1

2 Z
)

at the 0th level,

Z0 = Z−1
1

(
Z−1

2 Z
)

=

[
1 Ü(1)

0 V(1)
0

Ü(1)
1 V(1)

1 1

]
, (23)

where

Ü(1)
i =

[
1 U̇(2)

2i V(2)
2i

U̇(2)
2i+1V

(2)
2i+1 1

]−1

U̇(1)
i , (24)

for i=0,1. By using Eqs. (18)–(24), we can obtain Z2, Z1 and Z0. At last, Eq. (15) is used to compute
the unknown coefficients. In the calculation process, the inverses of ZL−1, . . . , Z1 and Z0 are required.
The diagonal blocks of these matrices have the special form as(

1 A0B0

A1B1 1

)
=

(
1 0
0 1

)
+

(
0 A0

A1 0

) (
B1 0
0 B0

)
, (25)

where 0 denotes the zero matrix. The sizes of A0 and A1 are M × r, and B1 has the size of r × M ,
r � M . Directly performing its inverse through the LU decomposition, the computational complexity
is O(M3). However, according to the Sherman-Morrison-Woodbury formula [14, 15], the inverse of Eq.
(25) can be expressed as [11, 12](

1 0
0 1

)
−

(
0 A0

A1 0

)(
1 B1A0

B0A1 1

)−1 (
B1 0
0 B0

)
. (26)

The calculation of B1A0 and B0A1 scales as O(r2M), and the inverse of the matrix [1,B1A0;B0A1,1]
scales as O(r3). Thus, the total computational complexity of Eq. (26) is only O(r2M). Hence, the
inverses of ZL−1, . . . , Z1 and Z0 can be quickly computed by Eq. (26). The computational complexity
of multiplying Eq. (26) by a vector is O(rM). Thus, the factorization of Eq. (14), which requires
multiplying Eq. (26) by vectors, can also be performed quickly. For more details about the complexity
of the SMWA, we refer the reader to [12].
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4. EXAMPLES AND DISCUSSION

In order to demonstrate the accuracy and efficiency of the aforementioned method for analyzing
composite conducting-dielectric arrays, in this section, several numerical results are provided. All the
simulations are irradiated by the 300 MHz uniform plane wave with the incident direction of (theta = 0,
phi) while the polarization is at the direction �x. In the first example, a 4× 4 array is calculated. Each
array element is a conical dielectric body, the subface of which is covered by the metallic material. The
base radius of every cone is 0.15 m, and the height is 0.5 m. The mutual distance between the elements
of the array is 0.6 m. The relative permittivity tensor of each dielectric array element is set as [1.5 0 0;
0 2.0 0; 0 0 2.2].

The conducting surfaces are discretized into 528 RWG basis functions while the dielectric conical
bodies are discretized into 9629 SWG basis functions. The total number of unknowns is 10157. The
target is divided into 4 levels by the binary tree, and the 4-level SMW algorithm is used. Numerical
result is shown in Fig. 2, and the bistatic RCS computed by SMWA agrees well with the one computed
by conventional MoM. Table 1 shows the CPU time and memory of the SWMA and the conventional
LU decomposition. It is clear that the SWMA saves much CPU time and memory.

To further demonstrate the efficiency and accuracy of the method, the second example considers

Table 1. The CPU time and memory of the first example.

Method T ime (s) Memory (MB)
conv. MoM 156 730

SMWA 57 83

Table 2. The CPU time and memory of the second example.

Method T ime (s) Memory (MB)
conv. MoM 2661 7533

SMWA 270 443

Figure 2. Bistatic RCSs of a 4 × 4 array of the first example.
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Figure 3. Bistatic RCSs of a 8 × 8 array of the second example.

the scattering field of a two-dimensional 8 × 8 array, whose elements are at a mutual distance of 0.6 m.
Every array element is a 0.3m×0.3m×0.3m dielectric cube with a metallic patch hanging at the height
of 0.2 m above the top surface, and the relative permittivity tensor of each dielectric array element is
[2.2 0 0; 0 1.5 0; 0 0 1.3]. In this example, the total number of unknowns is 32612, including 1344 RWG
and 31268 SWG basis functions. As shown in Figure 3, the results also agree well with each other. CPU
time and memory are shown in Table 2. The SMWA requires 244 s CPU time and 409 MB memory
while the conventional MoM requires 3276 s CPU time and 8114 MB memory. In this case, compared
with the conventional LU decomposition, the total time was reduced by a factor of 13 and the memory
reduced by a factor of 20 by the SMW algorithm.

5. CONCLUSION

In this article, the fast direct solver based on the Sherman-Morrison-Woodbury formula is implemented
to accelerate solving the electromagnetic scattering from composite conducting-dielectric arrays using
the VSIE. A remarkable reduction of CPU time and memory can be achieved by the algorithm. Hence,
the algorithm presented in this paper can be applied to solve the VSIE of electrically much larger
size. In addition, the SMWA is very simple for implementation and can be applied to analyse various
electromagnetic problems.
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