Vol. 70
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-10-21
Transferometry: a New Tool for Complex Wired Networks Diagnosis
By
Progress In Electromagnetics Research B, Vol. 70, 87-100, 2016
Abstract
Electrical cables of all types are subject to aggressive operational environments that can be source of defects or accelerated aging. Reflectometry-based methods are among the best ones for the detection and location of hard defects, but cannot easily provide efficient unambiguous diagnosis for complex topology networks, such as bus or star-shaped wired networks. This paper introduces the use of a new method, called transferometry, as an additional tool for the diagnosis of complex topology networks and shows that it presents many advantages compared to reflectometry, both in terms of implementation and data processing. Based on the fusion of the analysis results of several transmitted signals, it can provide a better diagnosis with fewer sensors than distributed reflectometry, with a simpler electronic architecture.
Citation
Fabrice Auzanneau, "Transferometry: a New Tool for Complex Wired Networks Diagnosis," Progress In Electromagnetics Research B, Vol. 70, 87-100, 2016.
doi:10.2528/PIERB16070607
References

1. Auzanneau, F., "Wire troubleshooting and diagnosis: Review and perspectives," Progress In Electromagnetics Research B, Vol. 49, 253-279, 2013.
doi:10.2528/PIERB13020115

2. Li, H., A. Bose, and V. M. Venkatasubramanian, "Wide-area voltage monitoring and optimization," IEEE Transactions on Smart Grid, Vol. 7, No. 2, 785-793, 2016.
doi:10.1109/TSG.2015.2467215

3. Tudor, J., D. Stevens, G. Ott, and W. Pomeroy, "Frequency modulated fault locator for power lines," IEEE Transactions on Power Apparatus and Systems, Vol. 95, 1760-1768, 1972.

4. Lelong, A., M. Olivas Carrion, V. Degardin, and M. Lienard, "On line wire diagnosis by modified spread spectrum time domain reflectometry," PIERS Proceeding, 182-186, Cambridge, USA, July 2–6, 2008.

5. Lelong, A. and M. Olivas Carrion, "On line wire diagnosis using multcarrier time domain reflectometry for fault location," IEEE Sensors Conference, 751-754, Christchurch, New Zealand, August 2009.

6. Ben Hassen, W., F. Auzanneau, F. Peres, and A. Tchangani, "OMTDR using BER estimation for ambiguities cancellation in ramified networks diagnosis," IEEE ISSNIP Conference, Melbourne, Australia, April 2013.

7. Furse, C., R. Dangol, and R. Nielsen, "Frequency-domain reflectometry for on-board testing of aging aircraft wiring," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, No. 2, 306-315, 2003.
doi:10.1109/TEMC.2003.811305

8. Sallem, S. and N. Ravot, "Self-adaptive correlation method for soft defect detection in cable by reflectometry," Proceeding of 2014 IEEE Sensors Conference, 2114-2117, Valencia, Spain, November 2014.

9. Sommervogel, L., L. El Sahmarany, and L. Incarbone, "Method to compensate dispersion effect applied to time domain reflectometry," Electronics Letters, Vol. 49, No. 18, 1154-1155, August 2013.
doi:10.1049/el.2013.1042

10. Ravot, N., F. Auzanneau, Y. Bonhomme, M. Olivas Carrion, and F. Bouillault, "Distributed reflectometry-based diagnosis for complex wired networks," EMC: Safety, Reliability and Security of Communication and Transportation Systems, EMC Workshop, Paris, June 2007.

11. Ben Hassen, W., F. Auzanneau, F. Peres, and A. Tchangani, "A distributed diagnosis strategy using bayesian network for complex wiring networks," IFAC A-MEST Workshop, Sevilla, Spain, November 2012.

12. Auzanneau, F., "Chaos time-domain reflectometry for distributed diagnosis of complex topology wired networks," Electronics Letters, Vol. 52, No. 4, 280-281, February 2016.
doi:10.1049/el.2015.3456

13. Fink, M., "Time reversal of ultrasonic fields — Part 1: Basic principles," IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 39, No. 5, 555-566, September 1992.
doi:10.1109/58.156174

14. Abboud, L., A. Cozza, and L. Pichon, "A noniterative method for locating soft faults in complex wire networks," IEEE Transactions on Vehicular Technology, Vol. 62, No. 3, 1010-1019, March 2013.
doi:10.1109/TVT.2013.2237796

15. Kafal, M., A. Cozza, and L. Pichon, "Locating multiple soft faults in wire networks using an alternative DORT implementation," IEEE Transactions on Instrumentation and Measurement, Vol. 65, No. 2, 399-406, Februry 2016.
doi:10.1109/TIM.2015.2498559

16. Miao, G., J. Zander, K.-W. Sung, and B. Slimane, Fundamentals of Mobile Data Networks, Cambridge University Press, 2016.
doi:10.1017/CBO9781316534298

17. Auzanneau, F., M. Olivas Carrion, and N. Ravot, "A simple and accurate model for wire diagnosis using reflectometry," PIERS Proceedings, 232-236, Prague, Czech Republic, August 27–30, 2007.

18. Beck, G., S. Imperiale, and P. Joly, "Mathematical modelling of multi conductor cables," Discrete and Continuous Dynamical Systems --- Series S (DCDS-S), Vol. 8, No. 3, 521-546, 2015.
doi:10.3934/dcdss.2015.8.521

19. Ulrich, M. and B. Yang, "Inference of wired network topology using multipoint reflectometry," Proc. of 23rd European Signal Processing Conf. EUSIPCO, Nice, France, August 2015.

20. Ben Hassen, W., F. Peres, and A. Tchangani, "Diagnosis sensor fusion for wire fault location in CAN bus systems," IEEE Sensors Conference, Baltimore, USA, November 2013.

21. Visco Comandini, F., M. Sorine, and M. Mirrahimi, "On the inverse scattering of star-shape LC-networks," Proceedings of the IEEE Conference on Decision and Control, 2075-2080, Cancun, Mexico, December 2008.