Vol. 50
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-09-20
Application of Quasi-TEM Surface Impedance Approach to Calculate Inductance, Resistance and Conductor Losses of Multiconductor Microstrip Line System
By
Progress In Electromagnetics Research M, Vol. 50, 85-93, 2016
Abstract
In this paper a recent new quasi-TEM surface impedance approach has been applied to fast characterization of multiconductor microstrip lines in terms of inductance and resistance matrices and conductor losses. Application examples for frequency-dependent parameters of interconnect circuits with up to five conductors (three-, four-, and five-strips) have been reported. The propagation characteristics and attenuation of multimode symmetrical multiconductor system are obtained. The effectiveness of the applied approach is confirmed by comparison of the computed numerical results with those obtained by full-wave simulators. They are found to be in good agreement.
Citation
El Mokhtar Hamham, "Application of Quasi-TEM Surface Impedance Approach to Calculate Inductance, Resistance and Conductor Losses of Multiconductor Microstrip Line System," Progress In Electromagnetics Research M, Vol. 50, 85-93, 2016.
doi:10.2528/PIERM16070203
References

1. Marqués, R., J. Aguilera, F. Medina, and M. Horno, "On the use of surface impedance approach in the quasi-TEM analysis of lossy and superconducting strip lines," Microwave and Optical Technology Letters, Vol. 6, 391-394, 1993.
doi:10.1002/mop.4650060702

2. Hamham, E. M., F. Mesa, F. Medina, and M. Khalladi, "Una aproximación cuasi-TEM para el cálculo eficiente de las pérdidas en el conductor en lneas microtiras simples y acopladas multicapa," XXVI URSI Proceedings, Leganés, Madrid, September 2011, ISBN: 978-84-933934-5-8.

3. Hamham, E. M., F. Mesa, F. Medina, and M. Khalladi, "A surface-impedance quasi-TEM approach for the efficient calculation of conductor losses in multilayer single and coupled microstrip lines," IET, Microwaves, Antennas & Prpagatio, Vol. 6, No. 5, 519-526, 2012.
doi:10.1049/iet-map.2011.0362

4. Clayton, R. P., Analysis of Multiconductor Transmission Lines, 2nd Ed., John Wiley & Sons, 2008.

5. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 3rd Ed., Artech House Publishers, 2013.

6. Musa, S. M., M. N. Sadiku, and J. V. Clark, "Finite element analysis for electromagnetic parameters of multiconductor interconnects in multilayered dielectric media," International Journal of Research and Reviews in Computer Science, Vol. 2, 1300-1304, 2011.

7. Matsuki, M. and A. Matsushima, "Efficient impedance computation for multiconductor transmission lines of rectangular cross section," Progress In Electromagnetics Research B, Vol. 43, 373-391, 2012.
doi:10.2528/PIERB12071105

8. Bertazzi, F., G. Ghione, and M. Goano, "A generalized mom-spice iterative technique for field coupling to multiconductor transmission lines in presence of complex structures," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, 234-246, 2005.

9. Cano, G., F. Medina, and M. Horno, "On the efficient implementation of SDA for boxed strip-like and slot-like structures," IEEE Transactions on Microwave Theory & Techniques, Vol. 46, 1801-1806, 1998.
doi:10.1109/22.734588

10. Park, S. and C. A. Balanis, "Closed-form asymptotic extraction method for coupled microstrip lines," IEEE Microwave and Guided Wave Letters, Vol. 7, 84-86, 1997.
doi:10.1109/75.556040

11. Drake, E., F. Medina, and M. Horno, "Improved quasi-tem spectral domain analysis of boxed coplanar multiconductor microstrip lines," IEEE Transactions on Microwave Theory & Techniques, Vol. 41, 260-267, 1993.
doi:10.1109/22.216466

12. Park, H. H., J. H. Kwon, J. W. Lee, and H. J. Eom, "Analysis of single layered multiconductor transmission lines using the fourier transform and mode-matching techniques," Microwave and Optical Technology Letters, Vol. 36, 315-317, 2003.
doi:10.1002/mop.10752

13. Bertazzi, F., G. Ghione, and M. Goano, "Efficient quasi-tem frequencydependent analysis of lossy multiconductor lines through a fast reduced order fem model," IEEE Transactions on Microwave Theory & Techniques, Vol. 51, 2029-2035, 2003.
doi:10.1109/TMTT.2003.815875

14. Aguilera, J., R. Marqués, and M. Horno, "Improved quasi-static spectral domain analysis of microstrip lines on high-conductivity insulator semiconductor substrates," IEEE Microwave and Guided Wave Letters, Vol. 9, 57-59, 1999.
doi:10.1109/75.755045

15. Bernal, J., F. Medina, R. Boix, and M. Horno, "Fast full-wave analysis of multistrip transmission lines based on mpie and complex image theory," IEEE Transactions on Microwave Theory & Techniques, Vol. 48, 445-452, 2000.
doi:10.1109/22.826845